
D-MATH Number Theory I HS 2023
Prof. Richard Pink

Solutions 8

Units, Decomposition Of Prime Ideals

*1. (a) Let M be a bounded subset of a finite dimensional real vector space V .
Construct another bounded subset N ⊂ V such that for any complete lattice
Γ ⊂ V with V = Γ +M , the subset Γ ∩N generates Γ.

(b) Deduce that, in principle, for every number field K one can effectively find
generators of O×

K .

Solution: See for example [Borewicz-Shafarevic: Zahlentheorie (1966) Kapitel II
§5.3]. Alternatively, here is an ad hoc solution for (a):

After replacing M by the convex closure of M + (−M) we may assume that
M is convex and centrally symmetric. Let n := dimR(V ). We claim that then
N := max{n, 2}M has the desired property.

First let Γ′ be the subgroup generated by Γ∩2M . By the assumption V = Γ+M ,
for any γ ∈ Γ there exist δ ∈ Γ and m ∈ M such that γ

2
= δ + m. Then

2m = γ − 2δ ∈ Γ ∩ 2M ⊂ Γ′; hence γ ∈ 2Γ + Γ′. Since γ was arbitrary, it follows
that the composite homomorphism Γ′ ↪→ Γ↠ Γ/2Γ is surjective. But Γ is a lattice
of rank n, and so Γ′ is a sublattice of some rank n′ ⩽ n. We thus have a surjective
homomorphism Zn′ ∼= Γ′ ↠ Γ/2Γ ∼= (Z/2Z)n, which implies that n′ = n.

We can therefore choose R-linearly independent elements γ1, . . . , γn ∈ Γ ∩ 2M .
With Γ′′ :=

⊕n
i=1 Zγi we then have V =

⊕n
i=1Rγi = Γ′′ + Φ for the subset

Φ :=
∑n

i=1[−
1
2
, 1
2
]γi. Here the fact that γi ∈ 2M and the assumption that M

is convex and centrally symmetric implies that [−1
2
, 1
2
]γi ⊂ M . Again by the

convexity of M we therefore have Φ ⊂ nM ⊂ N , and so V = Γ′′ + N . Finally
this implies that Γ = Γ′′ + (Γ ∩ N). Since Γ′′ is already generated by a subset of
Γ ∩ 2M ⊂ Γ ∩N , it follows that Γ is generated by Γ ∩N , as desired.

2. Prove that for any odd prime number p the following are equivalent:

(a) p ≡ 1 mod (4).

(b) p splits in Z[i].
(c) p = a2 + b2 for some a, b ∈ Z.

Solution: With K := Q(i) we already know that OK = Z[i]. For any odd
prime p, by the first supplement to Gauss’s quadratic reciprocity law we also
know that (−1

p
) = (−1)

p−1
2 . By Example 6.2.5 of the lecture p is therefore split if

p ≡ 1 mod (4), and inert if p ≡ 3 mod (4). In particular this proves (a)⇔(b).
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Next suppose that p splits in Z[i], that is, that pOK = pp′ for distinct prime ideals
p, p′ ⊂ OK . As OK = Z[i] is a principal ideal domain, we then have p = (a + bi)
for some a, b ∈ Z. Also, since Gal(K/Q) acts transitively on the primes above p, it
follows that p′ = (a−bi). Together this implies that (p) = (a+bi)(a−bi) = (a2+b2).
Therefore p and a2+b2 differ by a factor on O×

K = {±1,±i}. But as both numbers
are positive rational, this factor must be 1; hence p = a2+b2. This shows (b)⇒(c).

Now suppose that p = a2+b2 for some a, b ∈ Z. Then we have p = (a+bi)(a−bi).
Here a, b ̸= 0, because p is not a square in Z. In particular neither of a ± bi is a
unit; thus p is not prime in OK . Being odd, it is also not ramified in OK . It only
remains that p is split in OK , and then p = (a + bi)(a − bi) is actually its prime
factorization in OK . In particular this proves (c)⇒(b).

*3. Show that the ring of integers of Q( 3
√
2 ) is Z[ 3

√
2 ] and compute its discriminant.

Solution: This solution is based partly on https://math.stackexchange.com/

a/183093. Abbreviate ω := 3
√
2 and set K := Q(ω). Then ω is integral over Z

and therefore Z[ω] ⊂ OK . Conversely we can write any element α ∈ OK uniquely
in the form α = a1 + a2ω + a3ω

2 with all ai ∈ Q and must prove that all ai ∈ Z.
For this observe that α is a zero of the polynomial f(X) :=

∏3
i=1(X − σi(α)) for

the three embeddings σi : K ↪→ C. Using the fact that these map ω to ω and ζω
and ζ2ω for ζ := e2πi/3, an explicit computation shows that

f(X) = X3 − 3a1X
2 + (3a21 − 6a2a3)X + (6a1a2a3 − a31 − 2a32 − 4a33).

Here α ∈ OK implies that all coefficients lie in Z. In particular we have TrK/Q(α) =
3a1 ∈ Z. Similarly we obtain TrK/Q(ωα) = 6a3 ∈ Z and TrK/Q(ω

2α) = 6a2 ∈ Z.
Next we have

−27 · 4 · NmK/Q(α) = 27 · 4 · (6a1a2a3 − a31 − 2a32 − 4a33)

= 6 · 3a1 · 6a2 · 6a3 − 4 · (3a1)3 − (6a2)
3 − 2 · (6a3)3.

Here the left hand side is an even integer, and by what we have already seen the
right hand side is an integer congruent to (6a2)

3 modulo (2). Thus 6a2 is even
and therefore 3a2 ∈ Z. This in turn implies that the right hand side is an integer
congruent to 2 · (6a3)3 modulo (4). As the left hand side is divisible by 4, it follows
that 6a3 is even and therefore 3a3 ∈ Z. Together we thus have 3ai ∈ Z for all i.

After adding to α an element of Z[ω] we can now assume without loss of generality
that 3ai ∈ {−1, 0, 1} for all i. In other words we have |ai| ⩽ 1

3
, which implies that∣∣NmK/Q(α)

∣∣ =
∣∣6a1a2a3 − a31 − 2a32 − 4a33

∣∣ ⩽ 6 + 1 + 2 + 4

27
< 1.

As the left hand side is an integer, it follows that NmK/Q(α) = 0. But this holds
only for α = 0. We have therefore shown that OK = Z[ω].
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Finally the discriminant of OK = Z[ω] is the discriminant of the minimal polyno-
mial X3 − 2 of ω over Q. It is therefore equal to

(ω − ζω)2(ω − ζ2ω)2(ζω − ζ2ω)2 = ω6(1− ζ)2(1− ζ2)2(ζ − ζ2)2

= −ω6
[
(1− ζ)(1− ζ2)

]3
ζ3

= −4 · 33 = −108.

Remark: In fact 108 is the smallest possible absolute value of the discriminant of
a cubic number field.

4. In the number field K := Q( 3
√
2), what are the possible decompositions of pOK

for rational primes p?

Solution: Let p be a rational prime and pOK =
∏r

i=1 p
ei
i its prime factorization

in OK . Then
∑r

i=1 eifi = [K/Q] = 3. Hence 1 ⩽ r ⩽ 3 and the possibilities for
(r; e1, f1; e2, f2; . . . ) are, up to permutation of the pi:

r = 1 : (1; 3, 1)

(1; 1, 3)

r = 2 : (2; 1, 1; 2, 1)

(2; 1, 1; 1, 2)

r = 3 : (3; 1, 1; 1, 1; 1, 1)

To compute the decomposition recall from exercise 3 above that OK = Z[ 3
√
2] ∼=

Z[X]/(X3 − 2). For any prime p we therefore have OK/pOK
∼= Fp[X]/(X3 − 2),

and the prime factorization of pOK corresponds to the prime factorization ofX3−2
in Fp[X]. For instance

OK/2OK
∼= F2[X]/(X3) ⇝ (1; 3, 1)

OK/3OK
∼= F3[X]/(X − 2)3 ⇝ (1; 3, 1)

OK/5OK
∼= F5[X]/((X − 3)(X2 + 3X + 4)) ⇝ (2; 1, 1; 1, 2)

OK/7OK
∼= F7[X]/(X3 − 2) ⇝ (1; 1, 3)

OK/31OK
∼= F31[X]/((X − 4)(X − 7)(X − 20)) ⇝ (3; 1, 1; 1, 1; 1, 1)

Hence we found all theoretically possible decompositions except (2; 1, 1; 2, 1). We
claim that this type does not occur:

If the decomposition (2; 1, 1; 2, 1) occurs for some prime p, we must have X3−2 ≡
(X − a)2(X − b) mod p for some distinct a, b ∈ Z. Hence the image of X3 − 2 in
Fp[X] is not separable. In this case, we have for the discriminant ∆ of X3 − 2:

0 ≡ ∆ = − det


1 0 0 −2 0
0 1 0 0 −2
3 0 0 0 0
0 3 0 0 0
0 0 3 0 0

 = −108 = −2233 mod p,
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where the matrix is the Sylvester matrix of X3− 2 and d
dX

(X3− 2) = 3X2. Hence
p ∈ {2, 3}. But in these cases the decomposition type is (1; 3, 1), as shown above.
In conclusion, the decomposition cannot be of the form (2; 1, 1; 2, 1).

5. Consider a Dedekind ring A with quotient fieldK, a finite separable extension L/K
of degree n, and let B be the integral closure of A in L. Assume that L = K(α),
where the minimal polynomial f(X) = Xn +

∑n−1
i=0 aiX

i of α over K lies in A[X]
and is Eisenstein at a prime ideal p of A, that is, all ai ∈ p and a0 ̸∈ p2. Show
that pB = qn with q := pB + αB prime, so that p is totally ramified in B.

(Hint: Prove that pB ⊂ qj for all 1 ⩽ j ⩽ n by induction on j.)

Solution: Since f(α) = 0, the element α is integral over A and hence lies in B.
Next consider any prime ideal q′ ⊂ B over p. Then the equation f(α) = 0 shows
that αn ∈ pB ⊂ q′. Thus the residue class of α is a nilpotent element of B/q′ and
therefore zero. It follows that α ∈ q′ and hence q := pB + αB ⊂ q′.

Next we claim that pB ⊂ qj for all 1 ⩽ j ⩽ n. Since pB ⊂ q this is clear for j = 1.
So assume that it holds for some 1 ⩽ j < n. Then we have αn ∈ qn ⊂ qj+1, and
for all 0 < i < n we have aiα

i ∈ pqi ⊂ qj+1. The equation f(α) = 0 thus implies
that a0 ∈ qj+1. But since a0 ∈ p∖ p2, we have p = a0A+ p2 and hence

pB = a0B + p2B ⊂ qj+1 + (qj)2 = qj+1.

The claim thus follows by induction on j.

In particular we have pB ⊂ qn ⊂ q′n and hence pB = q′nb for some other non-zero
ideal b ⊂ B. Now write pB = qe11 · · · qerr with distinct prime ideals qi, exponents
ei ⩾ 1, and residue degrees fi ⩾ 1. From the lecture we know that

∑r
i=1 eifi = n.

Looking at the number of prime factors in the factorization qe11 · · · qerr = pB = q′nb
thus shows that

∑
i ei = n and that b = (1). The factorization therefore reduces

to pB = q′n. The inclusions pB ⊂ qn ⊂ q′n = pB then also imply that q = q′.
Thus q is the unique prime of B over p and pB = qn.
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6. Consider the polynomial ring A := k[x] over a field k of characteristic p > 0. Take
an element t ∈ k× and let y be a zero of the polynomial

f(Y ) := Y p − xp−1Y − t ∈ A[Y ]

in an algebraic closure of K := Quot(A).

(a) Show that f is invariant under the substitions Y 7→ Y + αx for all α ∈ Fp.

(b) Show that f is separable and irreducible over K.

(c) Show that L := K(y)/K is galois with Galois group isomorphic to (Fp,+).

*(d) Show that the integral closure B of A in L is equal to{
A[z] for z := x

y−s
if t = sp for some s ∈ k,

A[y] if t does not lie in the subfield k′ := {ap | a ∈ k}.
.

(e) Determine the behavior of the prime p := Ax ⊂ A in B.

(f) Discuss the action of Gal(L/K) on the residue field extension at p.

Solution:

(a) For any α ∈ Fp we have αp = α and hence

f(Y +αx) = (Y +αx)p−xp−1(Y +αx)−t = Y p+αxp−xp−1Y −αxp−t = f(Y ).

(b) By (a) the polynomial f has the p distinct roots y+αx for all α ∈ Fp. Being
a polynomial of degree p, it is therefore separable.

Also, the substitutions Y 7→ Y +αx induce an action of the group (Fp,+) on
the ring A[Y ]. By (a) this action fixes f , so it permutes the different monic
irreducible factors of f . As the action on the roots is already transitive, it
is also transitive on the irreducible factors. Since (Fp,+) is cyclic of prime
order, the number of irreducible factors is therefore either 1 or p. In the first
case f is irreducible, as desired.

In the second case we must have y ∈ K. Since yp − xp−1y − t = 0, the
element y is also integral over A = k[x], and since k[x] is a normal integral
domain, we then have y ∈ k[x]. Now the equation yp = xp−1y+ t implies that
p · degx(y) = p− 1 + degx(y) and therefore degx(y) = 1. Thus we must have
y = ax+ b for some a, b ∈ k. But

f(ax+ b) = (ax+ b)p − xp−1(ax+ b)− t = (ap − a)xp − bxp−1 + (bp − t)

can only vanish if b and bp − t vanish, which is impossible because t ̸= 0.
Thus the second case does not occur.
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(c) We have already seen that all roots of f lie in L := K(y) and are transitively
permuted by (Fp,+). Thus L/K is a splitting field of f and hence Galois
with Galois group (Fp,+).

*(d) Suppose first that t = sp for some s ∈ k. Then z := x
y−s

satisfies y = x
z
+ s

and hence

0 = f(x
z
+ s) = (x

z
+ s)p − xp−1(x

z
+ s)− sp = xp

zp
− xp

z
− xp−1s

and therefore
x− xzp−1 − szp = 0. (∗)

As s ∈ k× this shows that z is integral over A and therefore lies in B. Also
s ̸= 0 implies that 1 − zp−1 ̸= 0 and hence x = szp/(1 − zp−1). Since x is
transcendental over k, this shows that z is also transcendental over k. We can
therefore treat it like a variable over k, so that the subring A[z] = k[x, z] ⊂ B
becomes the subring

k
[
z,

szp

1− zp−1

]
⊂ k(z).

This subring contains the element

s−1 · szp

1− zp−1
+ z =

zp

1− zp−1
+ z =

z

1− zp−1

and thus also the element

zp−2 · z

1− zp−1
+ 1 =

zp−1

1− zp−1
+ 1 =

1

1− zp−1

and is therefore equal to

k
[
z,

1

1− zp−1

]
⊂ k(z).

But this is the localization of the principal ideal domain k[z] obtained by
inverting 1−zp−1, which is again normal by Proposition 1.4.4. Thus A[z] = B,
as desired.

Now suppose that t does not lie in the subfield k′ := {ap | a ∈ k}. Computing
the formal derivative df

dY
= −xp−1 we find that the discriminant of f is

±
∏
α∈Fp

df
dY

(y + αx) = ±
∏
α∈Fp

xp−1 = ±xp(p−1).

By Propositions 1.7.4–5 we therefore have B ⊂ x−p(p−1)A[y]. If B ̸= A[y],
there is therefore an element in B ∩ x−1A[y] ∖ A[y]. After subtracting an
element of A[y] we can write this in the form x−1g(y) for some non-zero
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polynomial g(Y ) ∈ k[Y ] of degree < p. As this element is integral over A, its
norm must satisfy

NmL/K(x
−1g(y)) =

∏
α∈Fp

x−1g(y + αx) ∈ A.

Multiplying by xp then implies that∏
α∈Fp

g(y + αx) ∈ xpA.

Since g(y + αx) ≡ g(y) modulo xB, this in turn implies that g(y)p ∈ xB.
Writing out g(y) =

∑p−1
i=0 aiy

i with ai ∈ k we can now deduce that

p−1∑
i=0

api y
pi =

( p−1∑
i=0

aiy
i
)p

∈ xB.

But f(y) = 0 implies that yp ≡ t mod xB; so we obtain that

p−1∑
i=0

api t
i ∈ xB.

Here the left hand side is contained in k, and the right hand side is a proper
ideal of B; so we must have

∑p−1
i=0 a

p
i t

i = 0. This means that t is a root of
the non-zero polynomial g′(Y ) :=

∑p−1
i=0 a

p
iY

i ∈ k′[Y ]. As this polynomial has
degree < p, it follows that t is separable over k′. But tp ∈ k′ already implies
that the minimal polynomial of t over k′ is a divisor of Y p − tp ∈ k′[Y ] and
therefore has only the single root t. Together this shows that the minimal
polynomial must be equal to Y − t and therefore t ∈ k′. As this contradicts
our assumption, we conclude that B = A[y] in this case.

(e) In the case t = sp for some s ∈ k we have

B = A[z] ∼= k[x, Z]/(x− xZp−1 − sZp)

by (d) and (∗). Modulo p = (x) we therefore have

B/pB ∼= k[x, Z]/(x− xZp−1 − sZp, x) ∼= k[Z]/(sZp).

By Proposition 6.2.5 of the lecture it follows that pB = qp with the maximal
ideal q := (x, z) ⊂ B. Thus p is totally ramified in B.

Aliter: The polynomial x − xZp−1 − sZp ∈ A[Z] satisfies the Eisenstein
criterion for the prime p = (x) ⊂ A. Thus pB = qp follows from the above
exercise 5, without having to determine the precise form of B in (d).
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In the case t ̸∈ k′ we have B = A[y] ∼= k[x, Y ]/(f) by (d). Modulo p = xA
we therefore have

B/pB ∼= k[x, Y ]/(f, x) ∼= k[Y ]/(Y p − t).

Here by assumption Y p − t has no zero in k. Any irreducible factor in k[Y ]
therefore has degree > 1. As any irreducible polynomial of degree < p over
k is separable, it then follows that Y p − t is already irreducible over k. Thus
the factor ring k[Y ]/(Y p − t) is already a field, and so q := Bp is the unique
prime ideal of B above p.

(f) In the first case of (e) the residue field extension is trivial, and in the second
case it is purely inseparable of degree p, because the polynomial Y p − t is
inseparable. In both cases we have Aut(k(q)/k(p)) = 1, and Gal(L/K) acts
trivially on k(q).

Remark: In the second case it is still best to define the inertia group Iq as
the kernel of the homomorphism Gal(L/K) → Aut(k(q)/k(p)), although we
then have |Iq| = p ̸= 1 = e. In the case of imperfect residue fields the correct
definition of an unramified prime q|p requires that eq/p = 1 and that the
residue field extension is separable. In that way an unramified extension al-
ways remains unramified when one enlarges the base field k to an inseparable
extension k(s).
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