D-MATH Number Theory I HS 2023
Prof. Richard Pink .
Solutions 8

UNiITS, DECOMPOSITION OF PRIME IDEALS

*1. (a) Let M be a bounded subset of a finite dimensional real vector space V.
Construct another bounded subset N C V such that for any complete lattice
I' CV with V =14 M, the subset [' N N generates I'.

(b) Deduce that, in principle, for every number field K one can effectively find
generators of Oj.

Solution: See for example [Borewicz-Shafarevic: Zahlentheorie (1966) Kapitel 11
§5.3]. Alternatively, here is an ad hoc solution for (a):

After replacing M by the convex closure of M + (—M) we may assume that
M is convex and centrally symmetric. Let n := dimg(V'). We claim that then
N := max{n, 2} M has the desired property.

First let IV be the subgroup generated by 'N2M. By the assumption V =T+ M,
for any 7 € I' there exist 6 € I' and m € M such that 3 = 6 + m. Then
2m =~y —2) e 'N2M C I”; hence v € 2I" + I". Since « was arbitrary, it follows
that the composite homomorphism I < I" — I'/2T" is surjective. But I is a lattice
of rank n, and so I is a sublattice of some rank n’ < n. We thus have a surjective
homomorphism Z" = T" — I'/2I" = (Z/27)", which implies that n’ = n.

We can therefore choose R-linearly independent elements ~q,...,7v, € I' N 2M.
With I := @, Zv; we then have V = @ | Ry; = IV + @ for the subset
® = 3" [—3,3]7. Here the fact that ; € 2M and the assumption that M

is convex and centrally symmetric implies that [—%, %]% C M. Again by the

convexity of M we therefore have ® C nM C N, and so V = I" 4+ N. Finally
this implies that I' = I 4+ (I' N N). Since I'” is already generated by a subset of

I'm2M c I'N N, it follows that I" is generated by I' N NV, as desired.

2. Prove that for any odd prime number p the following are equivalent:
(a) p=1mod (4).
(b) p splits in Z[1].
(c) p=a®+ b* for some a,b € Z.
Solution: With K := Q(i) we already know that Ox = Z[i]. For any odd

prime p, by the first sul?plement to Gauss’s quadratic reciprocity law we also
know that (_71) = (=1)"z . By Example 6.2.5 of the lecture p is therefore split if

p=1mod (4), and inert if p = 3 mod (4). In particular this proves (a)<(b).
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*3.

Next suppose that p splits in Z[i], that is, that pOx = pp’ for distinct prime ideals
p,p’ C Ok. As Ok = Z[i] is a principal ideal domain, we then have p = (a + bi)
for some a,b € Z. Also, since Gal(K/Q) acts transitively on the primes above p, it
follows that p’ = (a—0bi). Together this implies that (p) = (a+bi)(a—bi) = (a*+b?).
Therefore p and a? 4 b* differ by a factor on O = {+1, +i}. But as both numbers
are positive rational, this factor must be 1; hence p = a®+b*. This shows (b)=-(c).

Now suppose that p = a®+b? for some a,b € Z. Then we have p = (a+bi)(a— bi).
Here a,b # 0, because p is not a square in Z. In particular neither of a £ bi is a
unit; thus p is not prime in Og. Being odd, it is also not ramified in Og. It only
remains that p is split in Ok, and then p = (a + bi)(a — bi) is actually its prime
factorization in Ok. In particular this proves (c¢)=(b).

Show that the ring of integers of Q(+v/2) is Z[v/2] and compute its discriminant.

Solution: This solution is based partly on https://math.stackexchange.com/
a/183093. Abbreviate w := /2 and set K := Q(w). Then w is integral over Z
and therefore Z[w] C Ok. Conversely we can write any element o € Ok uniquely
in the form a = a; + asw + asw? with all a; € Q and must prove that all a; € Z.

For this observe that a is a zero of the polynomial f(X) := [[_(X — o4(c)) for

the three embeddings o;: K < C. Using the fact that these map w to w and (w
and (2w for ¢ := e*™/3 an explicit computation shows that

f(X) = X3 —3a, X+ (3a? — 6aga3) X + (6a,azas — a® — 2a3 — 4a3).
Here o € Ok implies that all coefficients lie in Z. In particular we have Tr/g(a) =
3a; € Z. Similarly we obtain Try/g(wa) = 6a3 € Z and Trg g(w*a) = 6as € Z.
Next we have
—27-4-Nmgg(a) = 27-4-(6arasas — af — 2a3 — 4a3)
= 6- 3&1 . 6(12 . 6@3 —4- (30,1)3 — (6&2)3 -2 (6&3)3.

Here the left hand side is an even integer, and by what we have already seen the
right hand side is an integer congruent to (6a2)® modulo (2). Thus 6ay is even
and therefore 3as € Z. This in turn implies that the right hand side is an integer

congruent to 2-(6az)® modulo (4). As the left hand side is divisible by 4, it follows
that 6as is even and therefore 3az € Z. Together we thus have 3a; € Z for all i.

After adding to a an element of Z[w] we can now assume without loss of generality
that 3a; € {—1,0,1} for all i. In other words we have |a;| < 3, which implies that

6+1+2+4
’NmK/Q(@” = }6ala2a3—ai’—2a§—4a§| < —— < 1

As the left hand side is an integer, it follows that Nmpg/g(a) = 0. But this holds
only for & = 0. We have therefore shown that O = Z[w].
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Finally the discriminant of O = Z[w] is the discriminant of the minimal polyno-
mial X3 — 2 of w over Q. It is therefore equal to

(w = Cw)2(w — Cw)?(Cw — Cw)?> = WB(1 = ¢)2(1 = 2)%(¢ — ¢?)?
= —Wb[(1-0)(1-¢)]°¢
= —4-3 = —108.

Remark: In fact 108 is the smallest possible absolute value of the discriminant of
a cubic number field.

. In the number field K := Q(+v/2), what are the possible decompositions of pOx
for rational primes p?

Solution: Let p be a rational prime and pOx = [[;_, p{"* its prime factorization
in Og. Then Y !, e fi = [K/Q] = 3. Hence 1 < r < 3 and the possibilities for
(r;eq, f1;€2, fo;...) are, up to permutation of the p;:

r=1: (1;3,1)
(1:1,3)
r=2: (2;1,1;2,1)
(2;1,1;1,2)
r=3: (3;1,1;1,1;1,1)

[

To compute the decomposition recall from exercise 3 above that O = Z[v/2] =
Z[X]/(X? —2). For any prime p we therefore have O /pOj = F,[X]/(X? — 2),
and the prime factorization of pOg corresponds to the prime factorization of X3 —2
in F,[X]. For instance

Ok /20K _IF‘Q[X]/(X?’) ~ (1;3,1)

Ok /30 2 F3[X]/(X —2)3 ~ (1;3,1)

Ok /50K 2 F5[X]/((X — 3)(X?+3X +4)) ~(2;1,1;1,2)

Ok [T0x = F7[X]/(X? - ) ~ (11,3)
OK/310K = Fgl[ ]/(( )(X - 7)(X - 20)) ~ (3, 1, 1; 1,1; 1, 1)

Hence we found all theoretically possible decompositions except (2;1,1;2,1). We
claim that this type does not occur:

If the decomposition (2;1,1;2,1) occurs for some prime p, we must have X3 —2 =
(X —a)*(X —b) mod p for some distinct a,b € Z. Hence the image of X® — 2 in
F,[X] is not separable. In this case, we have for the discriminant A of X3 — 2:

100 -2 0
010 0 =2
0=A=—det|3 00 0 0 |=-108=-2%3% mod p,
030 0 O
003 0 O



where the matrix is the Sylvester matrix of X® — 2 and -%(X?® —2) = 3X?. Hence
p € {2,3}. But in these cases the decomposition type is (1;3,1), as shown above.
In conclusion, the decomposition cannot be of the form (2;1,1;2,1).

. Consider a Dedekind ring A with quotient field K, a finite separable extension L/ K
of degree n, and let B be the integral closure of A in L. Assume that L = K(«),
where the minimal polynomial f(X) = X"+ 37" a; X" of a over K lies in A[X]
and is Eisenstein at a prime ideal p of A, that is, all a; € p and ag & p?. Show
that pB = q" with q := pB + aB prime, so that p is totally ramified in B.

(Hint: Prove that pB C ¢’ for all 1 < j < n by induction on j.)

Solution: Since f(a) = 0, the element « is integral over A and hence lies in B.
Next consider any prime ideal ' C B over p. Then the equation f(a) = 0 shows
that o™ € pB C q'. Thus the residue class of « is a nilpotent element of B/q’ and
therefore zero. It follows that o € ¢’ and hence q .= pB + aB C ¢'.

Next we claim that pB C ¢’ for all 1 < j < n. Since pB C q this is clear for j = 1.
So assume that it holds for some 1 < j < n. Then we have a” € q" C ¢’*!, and
for all 0 < 7 < n we have a;a’ € pq* C /1. The equation f(a) = 0 thus implies
that ag € ¢’*1. But since ag € p \ p?, we have p = apA + p? and hence

pB:(IOB‘l—pQBC qj+1_‘_<qj)2:qj+l‘

The claim thus follows by induction on j.

In particular we have pB C q" C '™ and hence pB = ¢'"b for some other non-zero
ideal b C B. Now write pB = q7' - - - ¢ with distinct prime ideals g;, exponents
e; > 1, and residue degrees f; > 1. From the lecture we know that > . e;f; = n.
Looking at the number of prime factors in the factorization qf* ---q¢ = pB = q'"b
thus shows that >, e; = n and that b = (1). The factorization therefore reduces
to pB = ¢'". The inclusions pB C q" C q'" = pB then also imply that q = ¢'.
Thus q is the unique prime of B over p and pB = q".



6. Consider the polynomial ring A := k[z] over a field k of characteristic p > 0. Take
an element t € k™ and let y be a zero of the polynomial

fY) == YP — 2Pty —t € A[Y]
in an algebraic closure of K := Quot(A).

(a) Show that f is invariant under the substitions Y — Y + az for all a € F,.
(

)
b) Show that f is separable and irreducible over K.
(c¢) Show that L := K(y)/K is galois with Galois group isomorphic to (F,, +).
)

*(d) Show that the integral closure B of A in L is equal to

Alz] for z = £ if t = s” for some s € k,
Aly] if t does not lie in the subfield k' := {a? | a € k}. |

(e) Determine the behavior of the prime p := Az C A in B.
(f) Discuss the action of Gal(L/K) on the residue field extension at p.

Solution:

(a) For any o € [F,, we have o = a and hence
f(Y+azx) = (Y+az)P =2’ (Y +ax)—t = YP+aa? —aP 'Y —az? —t = f(Y).

(b) By (a) the polynomial f has the p distinct roots y + ax for all a € F,,. Being
a polynomial of degree p, it is therefore separable.

Also, the substitutions Y — Y + ax induce an action of the group (F,, +) on
the ring A[Y]. By (a) this action fixes f, so it permutes the different monic
irreducible factors of f. As the action on the roots is already transitive, it
is also transitive on the irreducible factors. Since (F,,+) is cyclic of prime
order, the number of irreducible factors is therefore either 1 or p. In the first
case f is irreducible, as desired.

In the second case we must have y € K. Since y? — 2P~ 'y — ¢t = 0, the
element y is also integral over A = k[z], and since k[z] is a normal integral
domain, we then have y € k[z]. Now the equation y? = 2P~y +t implies that
p-deg,(y) =p—1+deg,(y) and therefore deg,(y) = 1. Thus we must have
y = ax + b for some a,b € k. But

flaz +b) = (ax + b)Y — 2P (ax +b) —t = (a® — a)x? — baP™' + (B’ —t)

can only vanish if b and b” — ¢t vanish, which is impossible because t # 0.
Thus the second case does not occur.



(c)

*(d)

We have already seen that all roots of f lie in L := K(y) and are transitively
permuted by (F,,+). Thus L/K is a splitting field of f and hence Galois
with Galois group (F,, +).

Suppose first that t = s? for some s € k. Then z := % satisfies y = £ + s
and hence

0= f(2+s) = (Z+s)P—aP H(Z4s)—s" = L 2 _ P lg

zP z

and therefore

x—xP =522 = 0. (%)
As s € k* this shows that z is integral over A and therefore lies in B. Also
s # 0 implies that 1 — 2P~ # 0 and hence x = s27/(1 — 2P~!). Since z is
transcendental over k, this shows that z is also transcendental over k. We can

therefore treat it like a variable over k, so that the subring A[z] = k[z, 2] C B
becomes the subring

k[z,l_s—z/:;l} C k(2).

This subring contains the element

1 szP n 2P n z
S s z2 = — z = —
1 — 27t 1 —zpt 1 —zpt

and thus also the element

p—1
9 z z 1

p—2, - - = -
: 1 — zp-1 L 1 — zp1 L 1— zp-1
and is therefore equal to

1
But this is the localization of the principal ideal domain k[z] obtained by
inverting 1—2P~!, which is again normal by Proposition 1.4.4. Thus A[z] = B,
as desired.

Now suppose that ¢ does not lie in the subfield ' := {a” | a € k}. Computing
the formal derivative f = —2P~! we find that the discriminant of f is

+ H (y +ar) = + H Pl = 4Pl

a€lfp a€lfp

By Propositions 1.7.4-5 we therefore have B C x PP~V A[y]. If B # Aly],
there is therefore an element in B Nz 'Afy] \ Aly]. After subtracting an
element of Afy] we can write this in the form x7'g(y) for some non-zero



polynomial g(Y) € k[Y] of degree < p. As this element is integral over A, its
norm must satisfy

Nmp(z'g(y) = [[ 2 '9(y+ax) € A

ackF,

Multiplying by 2P then implies that

H gy + azx) € zPA.

aclFy,

Since ¢g(y + ax) = g(y) modulo B, this in turn implies that g(y)? € xB.

Writing out g(y) = f:_ol a;y’ with a; € k we can now deduce that
p—1 p—1 »
aly? = (Z aiyi> € zB.
i=0 i=0

But f(y) = 0 implies that y? = ¢t mod xB; so we obtain that

p—1

Zafti € xB.

=0

Here the left hand side is contained in k, and the right hand side is a proper
ideal of B; so we must have Zf:_ol a’t’ = 0. This means that ¢ is a root of
the non-zero polynomial ¢'(Y) := >-7_ a?Y? € K'[Y]. As this polynomial has
degree < p, it follows that ¢ is separable over k/. But ¥ € k' already implies
that the minimal polynomial of ¢ over k&’ is a divisor of Y? — t? € K'[Y] and
therefore has only the single root ¢. Together this shows that the minimal
polynomial must be equal to Y — ¢ and therefore ¢ € k’. As this contradicts

our assumption, we conclude that B = Aly| in this case.

In the case t = s for some s € k we have
B = Al2] & klx,Z]/(x —aZP" — sZP)
by (d) and (x). Modulo p = () we therefore have
B/pB = k[x,Z))(x — 22" — sZP x) = k[Z]/(sZP).

By Proposition 6.2.5 of the lecture it follows that pB = ¢P with the maximal
ideal q := (z,2) C B. Thus p is totally ramified in B.

Aliter: The polynomial z — 2P~ — sZP € A[Z] satisfies the Eisenstein
criterion for the prime p = (x) C A. Thus pB = ¢? follows from the above
exercise 5, without having to determine the precise form of B in (d).



In the case t € k' we have B = Aly] = k[z,Y]/(f) by (d). Modulo p = zA
we therefore have

B/pyB = klx,Y]/(f,z) = k[Y]/(YP —1).

Here by assumption Y? — ¢ has no zero in k. Any irreducible factor in k[Y]
therefore has degree > 1. As any irreducible polynomial of degree < p over
k is separable, it then follows that Y? — ¢ is already irreducible over k. Thus
the factor ring k[Y]/(Y? —t) is already a field, and so q := Bp is the unique
prime ideal of B above p.

In the first case of (e) the residue field extension is trivial, and in the second
case it is purely inseparable of degree p, because the polynomial Y? — t is
inseparable. In both cases we have Aut(k(q)/k(p)) = 1, and Gal(L/K) acts
trivially on k(q).

Remark: In the second case it is still best to define the inertia group I, as
the kernel of the homomorphism Gal(L/K) — Aut(k(q)/k(p)), although we
then have |I;| = p # 1 = e. In the case of imperfect residue fields the correct
definition of an unramified prime q|p requires that e,;, = 1 and that the
residue field extension is separable. In that way an unramified extension al-
ways remains unramified when one enlarges the base field k to an inseparable
extension k(s).



