Number Theory I

Exercise sheet 9

DECOMPOSITION OF PRIMES

- 1. Let A be a Dedekind ring with quotient field K. Let K'/K be a finite separable extension and L/K its Galois closure over K. Set $\Gamma := \operatorname{Gal}(L/K)$ and $\Gamma' := \operatorname{Gal}(L/K')$. Let A' be the integral closure of A in K' and B that in L. Consider a maximal ideal $\mathfrak{p} \subset A$ with $k(\mathfrak{p})$ perfect and a prime ideal $\mathfrak{q} \subset B$ above \mathfrak{p} .
 - (a) Show that $\bigcap_{\gamma \in \Gamma} \gamma^{-1} \Gamma' \gamma = \{1\}.$
 - (b) Construct a natural bijection between the set $S_{\mathfrak{p}}$ of prime ideals of A' above \mathfrak{p} and the set of double cosets $\Gamma' \setminus \Gamma / \Gamma_{\mathfrak{q}}$.
 - (c) Prove that \mathfrak{p} is totally split in K' if and only if it is totally split in L.
 - (d) Prove that \mathfrak{p} is unramified in K' if and only if it is unramified in L.
- 2. Let A be a Dedekind ring with quotient field K. Consider finite Galois extensions M/L/K such that M/K is Galois. Let $B \subset C$ denote the integral closures of A in $L \subset M$. Consider a prime $\mathfrak{r} \subset C$ above a prime $\mathfrak{q} \subset B$ above a prime $\mathfrak{p} \subset A$.
 - (a) Show that the decomposition group of \mathfrak{r} in $\operatorname{Gal}(M/K)$ surjects to the decomposition group of \mathfrak{q} in $\operatorname{Gal}(L/K)$.
 - (b) Show that the inertia group of r in Gal(M/K) surjects to the inertia group of q in Gal(L/K), if k(p) is perfect. *Hint:* Use the multiplicativity e_{r|p} = e_{r|q} · e_{q|p}.
- 3. Construct a number field L in which there are at least two distinct prime ideals of \mathcal{O}_L over every rational prime.

Hint: Try a composite of quadratic number fields.

- 4. Consider a number field K and a positive integer m. Let $G_m(K) := \{x^m \mid x \in K^*\}$ be the subgroup of m-th powers in K^* and $L_m(K)$ the group of elements $x \in K^*$ such that, in the prime factorization of (x), all exponents are multiples of m.
 - (a) Prove that for every $x \in L_m(K)$, there exists a unique fractional ideal \mathfrak{a}_x such that $(x) = \mathfrak{a}_x^m$.
 - (b) Define $S_m(K) := L_m(K)/G_m(K)$ and $\operatorname{Cl}(\mathcal{O}_K)[m] := \{c \in \operatorname{Cl}(\mathcal{O}_K) \mid c^m = 1\}$ and show that we get a well-defined group homomorphism

$$f: S_m(K) \longrightarrow \operatorname{Cl}(\mathcal{O}_K)[m], \ [x] \mapsto [\mathfrak{a}_x]$$

- (c) Show that f is surjective.
- (d) Identify the kernel of f.

*5. (*Hilbert's Theorem 90*) Let L/K be a finite Galois extension of fields whose Galois group is cyclic and generated by σ . Show that for any element $x \in L^{\times}$ with $\operatorname{Norm}_{L/K}(x) = 1$ there exists an element $y \in L^{\times}$ with $x = \sigma(y)/y$. *Hint:* Set n := [L/K] and consider the map

$$h: L \longrightarrow L, \quad z \mapsto h(z) := \sum_{i=0}^{n-1} \sigma^i(z) \cdot \prod_{i < j < n} \sigma^j(x).$$