Number Theory I

Solutions 9

DECOMPOSITION OF PRIMES

- 1. Let A be a Dedekind ring with quotient field K. Let K'/K be a finite separable extension and L/K its Galois closure over K. Set $\Gamma := \operatorname{Gal}(L/K)$ and $\Gamma' := \operatorname{Gal}(L/K')$. Let A' be the integral closure of A in K' and B that in L. Consider a maximal ideal $\mathfrak{p} \subset A$ with $k(\mathfrak{p})$ perfect and a prime ideal $\mathfrak{q} \subset B$ above \mathfrak{p} .
 - (a) Show that $\bigcap_{\gamma \in \Gamma} \gamma^{-1} \Gamma' \gamma = \{1\}.$
 - (b) Construct a natural bijection between the set $S_{\mathfrak{p}}$ of prime ideals of A' above \mathfrak{p} and the set of double cosets $\Gamma' \setminus \Gamma / \Gamma_{\mathfrak{q}}$.
 - (c) Prove that \mathfrak{p} is totally split in K' if and only if it is totally split in L.
 - (d) Prove that \mathfrak{p} is unramified in K' if and only if it is unramified in L.

Solution:

- (a) The group in question is the unique largest subgroup of Γ' that is normal in Γ . By the Galois correspondence it therefore corresponds to the unique smallest subfield of L containing K' that is galois over K. By assumption that is L itself, so the subgroup is trivial.
- (b) For any $\gamma \in \Gamma$ we first note that ${}^{\gamma}\mathfrak{q} \subset B$ is a prime ideal with ${}^{\gamma}\mathfrak{q} \cap A = \mathfrak{p}$. Its intersection ${}^{\gamma}\mathfrak{q} \cap A'$ is then a prime ideal of A', whose intersection with A is again \mathfrak{p} . Thus we have a natural map

$$\Gamma \longrightarrow S_{\mathfrak{p}}, \quad \gamma \mapsto {}^{\gamma}\mathfrak{q} \cap A'. \tag{(*)}$$

For any $\mathfrak{p}' \in S_{\mathfrak{p}}$ there exists a prime ideal of B above \mathfrak{p}' . Since Γ transitively permutes the prime ideals of B above \mathfrak{p} , this prime ideal has the form ${}^{\gamma}\mathfrak{q}$ for some $\gamma \in \Gamma$. Thus $\mathfrak{p}' = {}^{\gamma}\mathfrak{q} \cap A'$, proving that the map (*) is surjective. Now consider another element $\delta \in \Gamma$. Then we have ${}^{\delta}\mathfrak{q} \cap A' = {}^{\gamma}\mathfrak{q} \cap A'$ if and only if both ${}^{\delta}\mathfrak{q}$ and ${}^{\gamma}\mathfrak{q}$ are prime ideals of B above the prime ideal ${}^{\gamma}\mathfrak{q} \cap A'$ of A'. As the Galois group Γ' transitively permutes the prime ideals of Babove ${}^{\gamma}\mathfrak{q} \cap A'$, this is equivalent to ${}^{\delta}\mathfrak{q} = {}^{\gamma'\gamma}\mathfrak{q}$ for some $\gamma' \in \Gamma'$. That in turn is equivalent to $\mathfrak{q} = {}^{\delta^{-1}\gamma'\gamma}\mathfrak{q}$ and hence to ${}^{\delta^{-1}}\gamma'\gamma \in \Gamma_{\mathfrak{q}}$, or again to $\gamma'\gamma\Gamma_{\mathfrak{q}} = \delta\Gamma_{\mathfrak{q}}$. Thus ${}^{\delta}\mathfrak{q} \cap A' = {}^{\gamma}\mathfrak{q} \cap A'$ if and only if there exists $\gamma' \in \Gamma'$ with $\gamma'\gamma\Gamma_{\mathfrak{q}} = \delta\Gamma_{\mathfrak{q}}$, that is, if and only if $\Gamma'\gamma\Gamma_{\mathfrak{q}} = \Gamma'\delta\Gamma_{\mathfrak{q}}$. Thus the map (*) induces the desired bijection. (c) The prime \mathfrak{p} is totally split in K' if and only if $|S_{\mathfrak{p}}| = [K'/K]$. By (b) this is equivalent to $|\Gamma' \setminus \Gamma / \Gamma_{\mathfrak{q}}| = |\Gamma' \setminus \Gamma|$. This is so if and only if the surjective map $\Gamma' \setminus \Gamma \twoheadrightarrow \Gamma' \setminus \Gamma / \Gamma_{\mathfrak{q}}$ defined by $\Gamma' \gamma \mapsto \Gamma' \gamma \Gamma_{\mathfrak{q}}$ is bijective. That in turn is equivalent to $\Gamma' \gamma \Gamma_{\mathfrak{q}} = \Gamma' \gamma$ for all $\gamma \in \Gamma$. But

$$\Gamma'\gamma\Gamma_{\mathfrak{q}}=\Gamma'\gamma\iff\gamma\Gamma_{\mathfrak{q}}\subset\Gamma'\gamma\iff\Gamma_{\mathfrak{q}}\subset\gamma^{-1}\Gamma'\gamma.$$

Thus the condition is equivalent to $\Gamma_{\mathfrak{q}} \subset \bigcap_{\gamma \in \Gamma} \gamma^{-1} \Gamma' \gamma \stackrel{(a)}{=} \{1\}$. But that is equivalent to \mathfrak{p} being totally split in L, as desired.

(d) By (b) the prime \mathfrak{p} is unramified in K' if and only if $e_{\gamma \mathfrak{q} \cap A'|\mathfrak{p}} = 1$ for every $\gamma \in \Gamma$. By the multiplicativity

$$e_{\gamma \mathfrak{q}|\mathfrak{p}} = e_{\gamma \mathfrak{q}|\gamma \mathfrak{q} \cap A'} \cdot e_{\gamma \mathfrak{q} \cap A'|\mathfrak{p}}$$

this is equivalent to $e_{\gamma \mathfrak{q}|\mathfrak{p}} = e_{\gamma \mathfrak{q}|\gamma \mathfrak{q} \cap A'}$ for all $\gamma \in \Gamma$. To translate this into a condition on inertia groups we use the assumption that $k(\mathfrak{q})/k(\mathfrak{p})$ is separable. First note that $k(\gamma \mathfrak{q})/k(\mathfrak{p})$ is then again separable. Thus by Proposition 6.4.3 of the lecture the inertia group $I_{\gamma \mathfrak{q}}$ satisfies $|I_{\gamma \mathfrak{q}}| = e_{\gamma \mathfrak{q}|\mathfrak{p}}$. Also, the subextension $k(\gamma \mathfrak{q} \cap A')/k(\mathfrak{p})$ is separable, so by the same proposition applied to the extension L/K' we have $|I_{\gamma \mathfrak{q}} \cap \Gamma'| = e_{\gamma \mathfrak{q}|\mathfrak{q} \cap A'}$. The condition is therefore equivalent to $I_{\gamma \mathfrak{q}} = I_{\gamma \mathfrak{q}} \cap \Gamma'$, or again to $I_{\gamma \mathfrak{q}} \subset \Gamma'$, for all $\gamma \in \Gamma$. Now a direct computation shows that $I_{\gamma \mathfrak{q}} = \gamma I_{\mathfrak{q}} \gamma^{-1}$. Thus the condition is equivalent to $I_{\mathfrak{q}} \subset \bigcap_{\gamma \in \Gamma} \gamma^{-1} \Gamma' \gamma \stackrel{(a)}{=} \{1\}$. But that in turn is equivalent to $e_{\mathfrak{q}|\mathfrak{p}} = |I_{\mathfrak{q}}| = 1$. This is equivalent to $e_{\gamma \mathfrak{q}|\mathfrak{p}} = 1$ for all $\gamma \in \Gamma$, and hence to \mathfrak{p} being unramified in L, as desired.

- 2. Let A be a Dedekind ring with quotient field K. Consider finite Galois extensions M/L/K such that M/K is Galois. Let $B \subset C$ denote the integral closures of A in $L \subset M$. Consider a prime $\mathfrak{r} \subset C$ above a prime $\mathfrak{q} \subset B$ above a prime $\mathfrak{p} \subset A$.
 - (a) Show that the decomposition group of \mathfrak{r} in $\operatorname{Gal}(M/K)$ surjects to the decomposition group of \mathfrak{q} in $\operatorname{Gal}(L/K)$.
 - (b) Show that the inertia group of r in Gal(M/K) surjects to the inertia group of q in Gal(L/K), if k(p) is perfect. *Hint:* Use the multiplicativity e_{r|p} = e_{r|q} · e_{q|p}.

Solution: Abbreviate $\Gamma := \operatorname{Gal}(M/K)$ and $\overline{\Gamma} := \operatorname{Gal}(L/K)$ and let $\pi \colon \Gamma \twoheadrightarrow \overline{\Gamma}$ denote the canonical surjection. Then $\Gamma' := \ker(\pi) = \operatorname{Gal}(M/L)$.

(a) The respective decomposition groups are

$$\begin{split} \Gamma_{\mathfrak{r}} &:= \{ \gamma \in \Gamma \mid {}^{\gamma} \mathfrak{r} = \mathfrak{r} \}, \\ \bar{\Gamma}_{\mathfrak{q}} &:= \{ \bar{\gamma} \in \bar{\Gamma} \mid {}^{\bar{\gamma}} \mathfrak{q} = \mathfrak{q} \}. \end{split}$$

For any $\gamma \in \Gamma_{\mathfrak{r}}$ we thus have

$$\pi^{(\gamma)}\mathfrak{q} = \pi^{(\gamma)}(\mathfrak{r} \cap B) = {}^{\gamma}\mathfrak{r} \cap B = \mathfrak{r} \cap B = \mathfrak{q}$$

and therefore $\pi(\gamma) \in \overline{\Gamma}_{\mathfrak{q}}$. Conversely, take any $\overline{\gamma} \in \overline{\Gamma}_{\mathfrak{q}}$ and choose $\gamma \in \pi^{-1}(\overline{\gamma})$. Then ${}^{\gamma}\mathfrak{r} \cap B = {}^{\pi(\gamma)}(\mathfrak{r} \cap B) = {}^{\overline{\gamma}}\mathfrak{q} = \mathfrak{q}$ shows that ${}^{\gamma}\mathfrak{r}$ is a prime ideal of C above \mathfrak{q} . As $\Gamma' = \ker(\pi)$ transitively permutes the prime ideals of C above \mathfrak{q} , there exists $\delta \in \ker(\pi)$ with ${}^{\gamma}\mathfrak{r} = {}^{\delta}\mathfrak{r}$. Then ${}^{\delta^{-1}\gamma}\mathfrak{r} = \mathfrak{r}$ and so $\delta^{-1}\gamma \in \Gamma_{\mathfrak{r}}$ with $\pi(\delta^{-1}\gamma) = \overline{\gamma}$. Thus π induces a surjection $\Gamma_{\mathfrak{r}} \twoheadrightarrow \overline{\Gamma}_{\mathfrak{q}}$, proving (a).

(b) The respective inertia groups are

$$I_{\mathfrak{r}} := \{ \gamma \in \Gamma \mid \forall x \in C \colon {}^{\gamma}x \equiv x \mod \mathfrak{r} \}, \\ \bar{I}_{\mathfrak{q}} := \{ \bar{\gamma} \in \bar{\Gamma} \mid \forall x \in B \colon {}^{\bar{\gamma}}x \equiv x \mod \mathfrak{q} \}.$$

For any $\gamma \in I_{\mathfrak{r}}$ and any $x \in B$ we thus have $\gamma x - x \in \mathfrak{r} \cap B = \mathfrak{q}$ and therefore $\pi(\gamma) \in \overline{I}_{\mathfrak{q}}$. Thus π induces a homomorphism $I_{\mathfrak{r}} \to \overline{I}_{\mathfrak{q}}$. By construction its kernel $I'_{\mathfrak{r}} := I_{\mathfrak{r}} \cap \Gamma'$ is the inertia group of \mathfrak{r} over \mathfrak{q} , and we obtain an injection $I_{\mathfrak{r}}/I'_{\mathfrak{r}} \hookrightarrow \overline{I}_{\mathfrak{q}}$. Next, since $k(\mathfrak{p})$ is perfect, the finite extensions $k(\mathfrak{r})/k(\mathfrak{q})/k(\mathfrak{p})$ are separable. The respective inertia groups therefore satisfy $|I_{\mathfrak{r}}| = e_{\mathfrak{r}|\mathfrak{p}}$ and $|\overline{I}_{\mathfrak{q}}| = e_{\mathfrak{q}|\mathfrak{p}}$. By the multiplicativity $e_{\mathfrak{r}|\mathfrak{p}} = e_{\mathfrak{r}|\mathfrak{q}} \cdot e_{\mathfrak{q}|\mathfrak{p}}$ this implies that $|\overline{I}_{\mathfrak{q}}| = e_{\mathfrak{r}|\mathfrak{q}} = |I_{\mathfrak{r}}/I'_{\mathfrak{r}}|$. Thus the injection $I_{\mathfrak{r}}/I'_{\mathfrak{r}} \hookrightarrow \overline{I}_{\mathfrak{q}}$ is a bijection, proving (b).

3. Construct a number field L in which there are at least two distinct prime ideals of \mathcal{O}_L over every rational prime.

Hint: Try a composite of quadratic number fields.

Solution: Choose distinct odd primes $p \equiv p' \equiv 1 \mod (4)$ with $(\frac{p}{p'}) = (\frac{p'}{p}) = 1$, for example (p, p') = (13, 17) as in the solution to problem 6 (c) of sheet 5. Setting $K := \mathbb{Q}(\sqrt{p})$ and $K' := \mathbb{Q}(\sqrt{p'})$, we claim that L := KK' has the desired property. First note that $(\frac{p}{p'}) = 1$ implies that p splits in $\mathcal{O}_{K'}$, so there are two distinct primes of $\mathcal{O}_{K'}$ above p. Any primes of \mathcal{O}_L above these are then two distinct primes of \mathcal{O}_L above p, as desired. The same argument with K and K' interchanged proves that there are at least two distinct primes of \mathcal{O}_L above p'.

Now consider an arbitrary rational prime $q \neq p, p'$ and a prime \mathfrak{q} of \mathcal{O}_L above q. Then $d_K = p$ and $d_{K'} = p'$ implies that q is unramified in \mathcal{O}_K and in $\mathcal{O}_{K'}$. By exercise 2 (b) the inertia group $I_{\mathfrak{q}}$ therefore has trivial image in $\Gamma := \operatorname{Gal}(K/\mathbb{Q})$ and in $\operatorname{Gal}(K'/\mathbb{Q})$. Since $\Gamma \xrightarrow{\sim} \operatorname{Gal}(K/\mathbb{Q}) \times \operatorname{Gal}(K'/\mathbb{Q})$, it follows that $I_{\mathfrak{q}}$ is trivial; hence p is unramified in \mathcal{O}_L . The decomposition group $\Gamma_{\mathfrak{q}} < \Gamma$ is thus generated by the Frobenius substitution $\operatorname{Frob}_{\mathfrak{q}|q}$. In particular it is a cyclic subgroup of $\Gamma \cong C_2^2$ and hence a proper subgroup. Thus the number of primes of \mathcal{O}_L over q is $[\Gamma : \Gamma_{\mathfrak{q}}] \geq 2$, as desired. Aliter: Take $L := \mathbb{Q}(\mu_n)$ for a suitable composite integer n, for instance n = pp' with p, p' as above.

- 4. Consider a number field K and a positive integer m. Let $G_m(K) := \{x^m \mid x \in K^*\}$ be the subgroup of m-th powers in K^* and $L_m(K)$ the group of elements $x \in K^*$ such that, in the prime factorization of (x), all exponents are multiples of m.
 - (a) Prove that for every $x \in L_m(K)$, there exists a unique fractional ideal \mathfrak{a}_x such that $(x) = \mathfrak{a}_x^m$.
 - (b) Define $S_m(K) := L_m(K)/G_m(K)$ and $\operatorname{Cl}(\mathcal{O}_K)[m] := \{c \in \operatorname{Cl}(\mathcal{O}_K) \mid c^m = 1\}$ and show that we get a well-defined group homomorphism

$$f: S_m(K) \longrightarrow \operatorname{Cl}(\mathcal{O}_K)[m], \ [x] \mapsto [\mathfrak{a}_x]$$

- (c) Show that f is surjective.
- (d) Identify the kernel of f.

Solution:

- (a) For any $x \in L_m(K)$ the prime factorization of the principal ideal (x) has the form $(x) = \prod_i \mathfrak{p}_i^{ma_i}$ by assumption. Thus $\mathfrak{a}_x := \prod_i \mathfrak{p}_i^{a_i}$ has the required property, and it is unique by the uniqueness of the prime factorization.
- (b) Consider the map f̃: L_m(K) → Cl(O_K), x → [a_x]. For any x, y ∈ L_m(K) we have (a_xa_y)^m = a^m_xa^m_y = (x)(y) = (xy) and so a_{xy} = a_xa_y by uniqueness. Thus f̃ is a homomorphism. Also f̃(x)^m = [a_x]^m = [a^m_x] = [(x)] = 1 shows that Im(f̃) ⊂ Cl(O_K)[m]. Moreover consider any x ∈ G_m(K) and choose z ∈ K[×] such that z^m = x. Then a_x = (z) and hence f̃(x) = 1. Therefore G_m(K) ⊂ Ker f̃, and so f̃ factors through S_m, inducing the homomorphism f.
- (c) Let $[\mathfrak{a}] \in \operatorname{Cl}(\mathcal{O}_K)[m]$. Then \mathfrak{a}^m is principal, say $\mathfrak{a}^m = (x)$. But then $x \in L_m(K)$ and $\mathfrak{a} = \mathfrak{a}_x$ by uniqueness. Thus $f([x]) = [\mathfrak{a}]$; hence f is surjective, as desired.
- (d) Take any $x \in L_m(K)$. Then f([x]) = 1 if and only if $\mathfrak{a}_x = (y)$ for some $y \in K^{\times}$. By unique factorization of ideals this is equivalent to $\mathfrak{a}_x^m = (y)^m$, and hence to $(x) = (y^m)$, or again to $x = uy^m$ for some unit $u \in \mathcal{O}_K^{\times}$. Thus f([x]) = 1if and only if $x \in \mathcal{O}_K^{\times}G_m(K)$. Therefore $\operatorname{Ker}(f) = \mathcal{O}_K^{\times}G_m(K)/G_m(K)$. Since $\mathcal{O}_K^{\times} \cap G_m(K) = (\mathcal{O}_K^{\times})^m$, the second isomorphism theorem for groups yields a natural isomorphism $\operatorname{Ker}(f) \cong \mathcal{O}_K^{\times}/(\mathcal{O}_K^{\times})^m$.

*5. (*Hilbert's Theorem 90*) Let L/K be a finite Galois extension of fields whose Galois group is cyclic and generated by σ . Show that for any element $x \in L^{\times}$ with $\operatorname{Norm}_{L/K}(x) = 1$ there exists an element $y \in L^{\times}$ with $x = \sigma(y)/y$.

Hint: Set n := [L/K] and consider the map

$$h: L \longrightarrow L, \quad z \mapsto h(z) := \sum_{i=0}^{n-1} \sigma^i(z) \cdot \prod_{i < j < n} \sigma^j(x).$$

Solution: By Galois theory σ has finite order n and the elements $\mathrm{id}, \sigma, \ldots, \sigma^{n-1} \in \mathrm{Hom}_K(L,L)$ are L-linearly independent. Since all $\sigma^j(x)$ are non-zero, the map $h \in \mathrm{Hom}_K(L,L)$ is therefore also non-zero. Thus there exists $z \in L$ with $y := h(z) \neq 0$. Using the facts that $\sigma^n = \mathrm{id}$ and $\prod_{0 < j \leq n} \sigma^j(x) = \mathrm{Norm}_{L/K}(x) = 1$, we compute

$$\begin{aligned} x \cdot h(z) &= \sigma^n(x) \cdot \sum_{i=0}^{n-1} \sigma^i(z) \cdot \prod_{i < j < n} \sigma^j(x) \\ &= \sum_{i=0}^{n-1} \sigma^i(z) \cdot \prod_{i < j \leq n} \sigma^j(x) \\ &= z \cdot \prod_{0 < j \leq n} \sigma^j(x) + \sum_{i=1}^{n-1} \sigma^i(z) \cdot \prod_{i < j \leq n} \sigma^j(x) \\ &= \sigma^n(z) \cdot 1 + \sum_{i=1}^{n-1} \sigma^i(z) \cdot \prod_{i < j \leq n} \sigma^j(x) \\ &= \sum_{i=1}^n \sigma^i(z) \cdot \prod_{i < j \leq n} \sigma^j(x) \\ &= \sigma(h(z)). \end{aligned}$$

We therefore have $xy = \sigma(y)$ and hence $x = \sigma(y)/y$, as desired.