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DECOMPOSITION OF PRIMES

1. Let A be a Dedekind ring with quotient field K. Let K’/K be a finite separable
extension and L/K its Galois closure over K. Set I' := Gal(L/K) and [" :=
Gal(L/K'). Let A" be the integral closure of A in K" and B that in L. Consider
a maximal ideal p C A with k(p) perfect and a prime ideal ¢ C B above p.

(a) Show that (| oy~ 'T"y = {1}.

(b) Construct a natural bijection between the set S, of prime ideals of A" above p
and the set of double cosets I"\I'/T;.

(c) Prove that p is totally split in K’ if and only if it is totally split in L.

(d) Prove that p is unramified in K’ if and only if it is unramified in L.
Solution:

(a) The group in question is the unique largest subgroup of I' that is normal
in I'. By the Galois correspondence it therefore corresponds to the unique
smallest subfield of L containing K’ that is galois over K. By assumption
that is L itself, so the subgroup is trivial.

(b) For any v € I we first note that "q C B is a prime ideal with 7qN A = p. Its
intersection Yq N A’ is then a prime ideal of A’, whose intersection with A is
again p. Thus we have a natural map

I — S, v—=7qnA. ()

For any p’ € S, there exists a prime ideal of B above p’. Since I' transitively
permutes the prime ideals of B above p, this prime ideal has the form 7q for
some vy € I'. Thus p’ =7qN A’, proving that the map (x) is surjective.

Now consider another element § € I'. Then we have °qN A’ = "qN A’ if and
only if both °q and 7q are prime ideals of B above the prime ideal Yq N A’
of A’. As the Galois group I transitively permutes the prime ideals of B
above Y"qN A’, this is equivalent to °q = 77q for some v € I". That in turn is
equivalent to q = 9 '77q and hence to 614y € 'y, or again to /7'y = 6I;.
Thus °q N A’ = 7q N A if and only if there exists 7/ € I" with v/'yT'y = T,
that is, if and only if I'yI'y = I'6I';. Thus the map () induces the desired
bijection.



(c) The prime p is totally split in K’ if and only if |S,| = [K’/K]. By (b) this
is equivalent to [IY\I'/T'q| = |I"\I'|. This is so if and only if the surjective
map ["\I' = I"\I'/T'; defined by I"y +— I'~I'; is bijective. That in turn is
equivalent to I"yI'y = I'"y for all v € I'. But

'y =Ty < [, C 'y & [, Cvy 'Ty.

Thus the condition is equivalent to Iy C (), cpy ™ 'T"y @ {1}. But that is
equivalent to p being totally split in L, as desired.

(d) By (b) the prime p is unramified in K’ if and only if evqnar, = 1 for every
v € I'. By the multiplicativity

€rqlp = CEvqlrgna’ " EvgnA/p

this is equivalent to evq, = e€vqrgnas for all v € I'. To translate this into a
condition on inertia groups we use the assumption that k(q)/k(p) is separable.
First note that k(7q)/k(p) is then again separable. Thus by Proposition
6.4.3 of the lecture the inertia group I», satisfies |[q] = evq,. Also, the
subextension k(YqN A’)/k(p) is separable, so by the same proposition applied
to the extension L/ K’ we have |I,qNI"| = eyqgnas. The condition is therefore
equivalent to Iy = Ivg NI, or again to I, C I", for all v € I'. Now a direct

computation shows that I, = vI;y~'. Thus the condition is equivalent to

Iy CNyery 'y @ {1}. But that in turn is equivalent to eq, = |I| = 1.
This is equivalent to e~q, = 1 for all v € I', and hence to p being unramified
in L, as desired.

2. Let A be a Dedekind ring with quotient field K. Consider finite Galois extensions
M/L/K such that M/K is Galois. Let B C C denote the integral closures of A

in L. C M. Consider a prime v C C' above a prime q C B above a prime p C A.
(a) Show that the decomposition group of v in Gal(M/K) surjects to the decom-
position group of q in Gal(L/K).

(b) Show that the inertia group of v in Gal(M/K) surjects to the inertia group
of q in Gal(L/K), if k(p) is perfect.
Hint: Use the multiplicativity e, = €yq - €qlp-

Solution: Abbreviate I' := Gal(M/K) and I := Gal(L/K) and let m: I — T
denote the canonical surjection. Then I := ker(w) = Gal(M/L).

(a) The respective decomposition groups are

I. o= {yel|nt=r},
Iy = {7el|7g=q}.



For any v € I', we thus have
Mg ="MNB)="tNB=tNB=q

and therefore 7(7) € [';. Conversely, take any 4 € T'y and choose v € 771(¥).
Then "t N B = "™ (x N B) = 7q = q shows that 7t is a prime ideal of C
above q. As I" = ker(7) transitively permutes the prime ideals of C' above q,
there exists § € ker(m) with 7t = %. Then ¢ 7t = ¢ and so 0 'y € I, with
7(671y) = 4. Thus 7 induces a surjection I, — I, proving (a).

(b) The respective inertia groups are

I. = {WEF|VIEC’:7xEmedt},
I, = {ﬂ‘yef|Vx€B:7xExmodq}.

For any v € I, and any x € B we thus have "z —x € tN B = q and therefore
7(y) € I;. Thus 7 induces a homomorphism I, — I,. By construction its
kernel 1] := I, NI is the inertia group of t over ¢, and we obtain an injection
I./I — I,. Next, since k(p) is perfect, the finite extensions k(r)/k(q)/k(p)
are separable. The respective inertia groups therefore satisfy |I.| = e, and
]| = eyq and |I;| = eqp. By the multiplicativity ey, = €q - €q)p this implies
that |I;| = eyp/€qq = |I/1]|. Thus the injection I./I] — I, is a bijection,
proving (b).

3. Construct a number field L in which there are at least two distinct prime ideals
of Or, over every rational prime.

Hint: Try a composite of quadratic number fields.

Solution: Choose distinct odd primes p = p’ = 1 mod (4) with (5) = (%) =1,
for example (p, p’) = (13,17) as in the solution to problem 6 (c) of sheet 5. Setting

K :=Q(/p)and K’ := Q(v/p' ), we claim that L := KK’ has the desired property.

First note that (£) = 1 implies that p splits in O, so there are two distinct primes
of O+ above p. Any primes of Oy, above these are then two distinct primes of Oy,
above p, as desired. The same argument with K and K’ interchanged proves that
there are at least two distinct primes of Op, above p'.

Now consider an arbitrary rational prime ¢ # p,p’ and a prime q of Oy above q.
Then dx = p and dg: = p' implies that ¢ is unramified in Ok and in Og.. By
exercise 2 (b) the inertia group I; therefore has trivial image in I' := Gal(K/Q)
and in Gal(K’/Q). Since I' = Gal(K/Q)x Gal(K'/Q), it follows that I, is trivial;
hence p is unramified in Oy. The decomposition group I'y; < I' is thus generated
by the Frobenius substitution Frobg,. In particular it is a cyclic subgroup of
I' & (2 and hence a proper subgroup. Thus the number of primes of Oy, over q is
[I': Ty > 2, as desired.



Aliter: Take L := Q(u,) for a suitable composite integer n, for instance n = pp’
with p,p’ as above.

. Consider a number field K and a positive integer m. Let G, (K) := {2 | v € K*}
be the subgroup of m-th powers in K* and L,,(K) the group of elements = € K*
such that, in the prime factorization of (x), all exponents are multiples of m.

(a)
(b)

(c)
(d)

Prove that for every x € L,,(K), there exists a unique fractional ideal a, such
that (z) = al.

Define S,,(K) := L, (K)/Gn(K) and Cl(Ok)[m] := {c € Cl(Ok) | ™ = 1}
and show that we get a well-defined group homomorphism

f: Sn(K) — CYOk)[m], [z]— [a.]

Show that f is surjective.

Identify the kernel of f.

Solution:

()

(b)

For any x € L,,(K) the prime factorization of the principal ideal (z) has
the form (z) = [[, p;"* by assumption. Thus a, := [[, p{* has the required
property, and it is unique by the uniqueness of the prime factorization.

Consider the map f: L, (K) — Cl(Ok), = — [a,]. For any z,y € Ly,(K)
we have (a,a,)" = aj'ay’ = (v)(y) = (zy) and so a,, = a,a, by uniqueness.
Thus f is a homomorphism. Also f(z)™ = [a,]™ = [a7] = [(x)] = 1 shows
that Im(f) € Cl(Ok)[m]. Moreover consider any € G, (K) and choose
z € K* such that 2™ = z. Then a, = (2) and hence f(z) = 1. Therefore

Gn(K) C Ker f, and so f factors through S,,, inducing the homomorphism f.

Let [a] € Cl(Ok)[m]. Then a™ is principal, say a”™ = (x). But then z €
L, (K) and a = a, by uniqueness. Thus f([x]) = [a]; hence f is surjective,
as desired.

Take any x € L,,(K). Then f([z]) = 1ifand only if a, = (y) for somey € K*.
By unique factorization of ideals this is equivalent to a* = (y)™, and hence
to (x) = (y™), or again to x = uy™ for some unit u € OF. Thus f([z]) =1
if and only if z € O G,,,(K). Therefore Ker(f) = O5G(K)/Gpn(K). Since
O NGR(K) = (Of5)™, the second isomorphism theorem for groups yields a
natural isomorphism Ker(f) = O /(Ox)™.



*5. (Hilbert’s Theorem 90) Let L/K be a finite Galois extension of fields whose Galois
group is cyclic and generated by o. Show that for any element z € L* with
Normy, /i (x) = 1 there exists an element y € L* with z = o(y)/y.

Hint: Set n := [L/K] and consider the map

n—1
h: L — L, z~ h(z):= Zai(z) : Haj(x).
i=0 i<j<n
Solution: By Galois theory o has finite order n and the elements id, o, ...,0" ! €

Hompg (L, L) are L-linearly independent. Since all ¢/ (x) are non-zero, the map h €
Homy (L, L) is therefore also non-zero. Thus there exists z € L with y := h(z) # 0.
Using the facts that ¢” = id and [],_;, ¢/(z) = Normy x(x) = 1, we compute

z-h(z) = o™(x)- Zai(z) ] (@)

= a(h(z)).

We therefore have zy = o(y) and hence = = o(y)/y, as desired.



