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Solutions 9

Decomposition of primes

1. Let A be a Dedekind ring with quotient field K. Let K ′/K be a finite separable
extension and L/K its Galois closure over K. Set Γ := Gal(L/K) and Γ′ :=
Gal(L/K ′). Let A′ be the integral closure of A in K ′ and B that in L. Consider
a maximal ideal p ⊂ A with k(p) perfect and a prime ideal q ⊂ B above p.

(a) Show that
⋂

γ∈Γ γ
−1Γ′γ = {1}.

(b) Construct a natural bijection between the set Sp of prime ideals of A′ above p
and the set of double cosets Γ′\Γ/Γq.

(c) Prove that p is totally split in K ′ if and only if it is totally split in L.

(d) Prove that p is unramified in K ′ if and only if it is unramified in L.

Solution:

(a) The group in question is the unique largest subgroup of Γ′ that is normal
in Γ. By the Galois correspondence it therefore corresponds to the unique
smallest subfield of L containing K ′ that is galois over K. By assumption
that is L itself, so the subgroup is trivial.

(b) For any γ ∈ Γ we first note that γq ⊂ B is a prime ideal with γq∩A = p. Its
intersection γq ∩ A′ is then a prime ideal of A′, whose intersection with A is
again p. Thus we have a natural map

Γ −→ Sp, γ 7→ γq ∩ A′. (∗)

For any p′ ∈ Sp there exists a prime ideal of B above p′. Since Γ transitively
permutes the prime ideals of B above p, this prime ideal has the form γq for
some γ ∈ Γ. Thus p′ = γq ∩ A′, proving that the map (∗) is surjective.
Now consider another element δ ∈ Γ. Then we have δq ∩ A′ = γq ∩ A′ if and
only if both δq and γq are prime ideals of B above the prime ideal γq ∩ A′

of A′. As the Galois group Γ′ transitively permutes the prime ideals of B
above γq∩A′, this is equivalent to δq = γ′γq for some γ′ ∈ Γ′. That in turn is
equivalent to q = δ−1γ′γq and hence to δ−1γ′γ ∈ Γq, or again to γ′γΓq = δΓq.
Thus δq ∩ A′ = γq ∩ A′ if and only if there exists γ′ ∈ Γ′ with γ′γΓq = δΓq,
that is, if and only if Γ′γΓq = Γ′δΓq. Thus the map (∗) induces the desired
bijection.
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(c) The prime p is totally split in K ′ if and only if |Sp| = [K ′/K]. By (b) this
is equivalent to |Γ′\Γ/Γq| = |Γ′\Γ|. This is so if and only if the surjective
map Γ′\Γ ↠ Γ′\Γ/Γq defined by Γ′γ 7→ Γ′γΓq is bijective. That in turn is
equivalent to Γ′γΓq = Γ′γ for all γ ∈ Γ. But

Γ′γΓq = Γ′γ ⇐⇒ γΓq ⊂ Γ′γ ⇐⇒ Γq ⊂ γ−1Γ′γ.

Thus the condition is equivalent to Γq ⊂
⋂

γ∈Γ γ
−1Γ′γ

(a)
= {1}. But that is

equivalent to p being totally split in L, as desired.

(d) By (b) the prime p is unramified in K ′ if and only if eγq∩A′|p = 1 for every
γ ∈ Γ. By the multiplicativity

eγq|p = eγq|γq∩A′ · eγq∩A′|p

this is equivalent to eγq|p = eγq|γq∩A′ for all γ ∈ Γ. To translate this into a
condition on inertia groups we use the assumption that k(q)/k(p) is separable.
First note that k(γq)/k(p) is then again separable. Thus by Proposition
6.4.3 of the lecture the inertia group Iγq satisfies |Iγq| = eγq|p. Also, the
subextension k(γq∩A′)/k(p) is separable, so by the same proposition applied
to the extension L/K ′ we have |Iγq∩Γ′| = eγq|q∩A′ . The condition is therefore
equivalent to Iγq = Iγq ∩ Γ′, or again to Iγq ⊂ Γ′, for all γ ∈ Γ. Now a direct
computation shows that Iγq = γIqγ

−1. Thus the condition is equivalent to

Iq ⊂
⋂

γ∈Γ γ
−1Γ′γ

(a)
= {1}. But that in turn is equivalent to eq|p = |Iq| = 1.

This is equivalent to eγq|p = 1 for all γ ∈ Γ, and hence to p being unramified
in L, as desired.

2. Let A be a Dedekind ring with quotient field K. Consider finite Galois extensions
M/L/K such that M/K is Galois. Let B ⊂ C denote the integral closures of A
in L ⊂ M . Consider a prime r ⊂ C above a prime q ⊂ B above a prime p ⊂ A.

(a) Show that the decomposition group of r in Gal(M/K) surjects to the decom-
position group of q in Gal(L/K).

(b) Show that the inertia group of r in Gal(M/K) surjects to the inertia group
of q in Gal(L/K), if k(p) is perfect.

Hint: Use the multiplicativity er|p = er|q · eq|p.

Solution: Abbreviate Γ := Gal(M/K) and Γ̄ := Gal(L/K) and let π : Γ ↠ Γ̄
denote the canonical surjection. Then Γ′ := ker(π) = Gal(M/L).

(a) The respective decomposition groups are

Γr :=
{
γ ∈ Γ

∣∣ γr = r
}
,

Γ̄q :=
{
γ̄ ∈ Γ̄

∣∣ γ̄q = q
}
.
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For any γ ∈ Γr we thus have

π(γ)q = π(γ)(r ∩B) = γr ∩B = r ∩B = q

and therefore π(γ) ∈ Γ̄q. Conversely, take any γ̄ ∈ Γ̄q and choose γ ∈ π−1(γ̄).
Then γr ∩ B = π(γ)(r ∩ B) = γ̄q = q shows that γr is a prime ideal of C
above q. As Γ′ = ker(π) transitively permutes the prime ideals of C above q,
there exists δ ∈ ker(π) with γr = δr. Then δ−1γr = r and so δ−1γ ∈ Γr with
π(δ−1γ) = γ̄. Thus π induces a surjection Γr ↠ Γ̄q, proving (a).

(b) The respective inertia groups are

Ir :=
{
γ ∈ Γ

∣∣ ∀x ∈ C : γx ≡ x mod r
}
,

Īq :=
{
γ̄ ∈ Γ̄

∣∣ ∀x ∈ B : γ̄x ≡ x mod q
}
.

For any γ ∈ Ir and any x ∈ B we thus have γx− x ∈ r∩B = q and therefore
π(γ) ∈ Īq. Thus π induces a homomorphism Ir → Īq. By construction its
kernel I ′r := Ir∩Γ′ is the inertia group of r over q, and we obtain an injection
Ir/I

′
r ↪→ Īq. Next, since k(p) is perfect, the finite extensions k(r)/k(q)/k(p)

are separable. The respective inertia groups therefore satisfy |Ir| = er|p and
|Ī ′r| = er|q and |Īq| = eq|p. By the multiplicativity er|p = er|q · eq|p this implies
that |Īq| = er|p/er|q = |Ir/I ′r|. Thus the injection Ir/I

′
r ↪→ Īq is a bijection,

proving (b).

3. Construct a number field L in which there are at least two distinct prime ideals
of OL over every rational prime.

Hint: Try a composite of quadratic number fields.

Solution: Choose distinct odd primes p ≡ p′ ≡ 1 mod (4) with ( p
p′
) = (p

′

p
) = 1,

for example (p, p′) = (13, 17) as in the solution to problem 6 (c) of sheet 5. Setting
K := Q(

√
p ) andK ′ := Q(

√
p′ ), we claim that L := KK ′ has the desired property.

First note that ( p
p′
) = 1 implies that p splits inOK′ , so there are two distinct primes

of OK′ above p. Any primes of OL above these are then two distinct primes of OL

above p, as desired. The same argument with K and K ′ interchanged proves that
there are at least two distinct primes of OL above p′.

Now consider an arbitrary rational prime q ̸= p, p′ and a prime q of OL above q.
Then dK = p and dK′ = p′ implies that q is unramified in OK and in OK′ . By
exercise 2 (b) the inertia group Iq therefore has trivial image in Γ := Gal(K/Q)
and in Gal(K ′/Q). Since Γ

∼−→ Gal(K/Q)×Gal(K ′/Q), it follows that Iq is trivial;
hence p is unramified in OL. The decomposition group Γq < Γ is thus generated
by the Frobenius substitution Frobq|q. In particular it is a cyclic subgroup of
Γ ∼= C2

2 and hence a proper subgroup. Thus the number of primes of OL over q is
[Γ : Γq] ⩾ 2, as desired.
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Aliter: Take L := Q(µn) for a suitable composite integer n, for instance n = pp′

with p, p′ as above.

4. Consider a number fieldK and a positive integerm. Let Gm(K) := {xm | x ∈ K×}
be the subgroup of m-th powers in K× and Lm(K) the group of elements x ∈ K×

such that, in the prime factorization of (x), all exponents are multiples of m.

(a) Prove that for every x ∈ Lm(K), there exists a unique fractional ideal ax such
that (x) = amx .

(b) Define Sm(K) := Lm(K)/Gm(K) and Cl(OK)[m] := {c ∈ Cl(OK) | cm = 1}
and show that we get a well-defined group homomorphism

f : Sm(K) −→ Cl(OK)[m], [x] 7→ [ax]

(c) Show that f is surjective.

(d) Identify the kernel of f .

Solution:

(a) For any x ∈ Lm(K) the prime factorization of the principal ideal (x) has
the form (x) =

∏
i p

mai
i by assumption. Thus ax :=

∏
i p

ai
i has the required

property, and it is unique by the uniqueness of the prime factorization.

(b) Consider the map f̃ : Lm(K) → Cl(OK), x 7→ [ax]. For any x, y ∈ Lm(K)
we have (axay)

m = amx a
m
y = (x)(y) = (xy) and so axy = axay by uniqueness.

Thus f̃ is a homomorphism. Also f̃(x)m = [ax]
m = [amx ] = [(x)] = 1 shows

that Im(f̃) ⊂ Cl(OK)[m]. Moreover consider any x ∈ Gm(K) and choose
z ∈ K× such that zm = x. Then ax = (z) and hence f̃(x) = 1. Therefore
Gm(K) ⊂ Ker f̃ , and so f̃ factors through Sm, inducing the homomorphism f .

(c) Let [a] ∈ Cl(OK)[m]. Then am is principal, say am = (x). But then x ∈
Lm(K) and a = ax by uniqueness. Thus f([x]) = [a]; hence f is surjective,
as desired.

(d) Take any x ∈ Lm(K). Then f([x]) = 1 if and only if ax = (y) for some y ∈ K×.
By unique factorization of ideals this is equivalent to amx = (y)m, and hence
to (x) = (ym), or again to x = uym for some unit u ∈ O×

K . Thus f([x]) = 1
if and only if x ∈ O×

KGm(K). Therefore Ker(f) = O×
KGm(K)/Gm(K). Since

O×
K ∩Gm(K) = (O×

K)
m, the second isomorphism theorem for groups yields a

natural isomorphism Ker(f) ∼= O×
K/(O

×
K)

m.
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*5. (Hilbert’s Theorem 90 ) Let L/K be a finite Galois extension of fields whose Galois
group is cyclic and generated by σ. Show that for any element x ∈ L× with
NormL/K(x) = 1 there exists an element y ∈ L× with x = σ(y)/y.

Hint: Set n := [L/K] and consider the map

h : L −→ L, z 7→ h(z) :=
n−1∑
i=0

σi(z) ·
∏

i<j<n

σj(x).

Solution: By Galois theory σ has finite order n and the elements id, σ, . . . , σn−1 ∈
HomK(L,L) are L-linearly independent. Since all σj(x) are non-zero, the map h ∈
HomK(L,L) is therefore also non-zero. Thus there exists z ∈ L with y := h(z) ̸= 0.
Using the facts that σn = id and

∏
0<j⩽n σ

j(x) = NormL/K(x) = 1, we compute

x · h(z) = σn(x) ·
n−1∑
i=0

σi(z) ·
∏

i<j<n

σj(x)

=
n−1∑
i=0

σi(z) ·
∏

i<j⩽n

σj(x)

= z ·
∏

0<j⩽n

σj(x) +
n−1∑
i=1

σi(z) ·
∏

i<j⩽n

σj(x)

= σn(z) · 1 +
n−1∑
i=1

σi(z) ·
∏

i<j⩽n

σj(x)

=
n∑

i=1

σi(z) ·
∏

i<j⩽n

σj(x)

= σ(h(z)).

We therefore have xy = σ(y) and hence x = σ(y)/y, as desired.
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