- 6 Extensions of Dedekind rings
- 6.1 Modules over Dedekind rings
- 6.2 Decomposition of prime ideals
- 6.3 Decomposition group
- 6.4 Inertia group
- 6.5 Frobenius
- 6.6 Relative norm
- 6.7 Different
- 6.8 Relative discriminant

To prove Proposition 6.8.2 in general use the following facts from commutative algebra:

- For any prime ideal \mathfrak{p} of a ring A the set $S := A \setminus \mathfrak{p}$ is multiplicative and the ring $A_{\mathfrak{p}} := S^{-1}\mathfrak{p}$ is called the *localization of* A at \mathfrak{p} .
- For any ideal $\mathfrak{a} \subset A$ the set $\mathfrak{a}_{\mathfrak{p}} := S^{-1}\mathfrak{a}$ is an ideal of $A_{\mathfrak{p}}$.

Now assume that A is Dedekind and that \mathfrak{a} is a maximal ideal.

- Then $A_{\mathfrak{p}}$ is a principal ideal domain.
- For any nonzero ideals $\mathfrak{a}, \mathfrak{a}' \subset A$ we have $\mathfrak{a}_{\mathfrak{p}} = \mathfrak{a}'_{\mathfrak{p}}$ if and only if the exponents of \mathfrak{p} in the prime factorizations of \mathfrak{a} and \mathfrak{a}' coincide.

Now let B be the integral closure of A in a finite separable extension $L/\operatorname{Quot}(A)$.

- Then $B_{\mathfrak{p}} := S^{-1}B$ is a principal ideal domain.
- The formation of $\operatorname{disc}_{B/A}$ and $\operatorname{diff}_{B/A}$ and the relative ideal norm commutes with localization at \mathfrak{p} .

7 Zeta functions

7.1 Riemann zeta function

Definition 7.1.1: The *Riemann zeta function* is defined by the series

$$\zeta(s) := \sum_{n=1}^{\infty} n^{-s}.$$

Proposition 7.1.2: This series converges absolutely and locally uniformly for all $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$ and defines a holomorphic function there.

Lemma 7.1.3: For all $\operatorname{Re}(s) > 1$ we have

$$\zeta(s) = \frac{s}{s-1} - s \cdot \int_1^\infty (x - \lfloor x \rfloor) x^{-s-1} \, dx.$$

Proposition 7.1.4: The function $\zeta(s) - \frac{1}{s-1}$ extends uniquely to a holomorphic function on the region $\operatorname{Re}(s) > 0$.

Remark 7.1.5: It is known that $\zeta(s)$ extends uniquely to a meromorphic function on \mathbb{C} with a single pole at s = 1. This extension is again denoted by $\zeta(s)$.

Throughout the following we use the branch of the logarithm with $\log 1 = 0$.

Proposition 7.1.6: An infinite product of non-zero complex numbers $\prod_{k \ge 1} z_k$ converges to a non-zero value if and only if $\lim_{k \to \infty} z_k = 1$ and $\sum_{k \ge 1} \log z_k$ converges.

Proposition 7.1.7: For all $\operatorname{Re}(s) > 1$ we have the *Euler product*

$$\zeta(s) = \prod_{p \text{ prime}} (1 - p^{-s})^{-1} \neq 0.$$

Proposition 7.1.8: We have

$$\sum_{p \text{ prime}} p^{-s} = \log \frac{1}{s-1} + O(1) \text{ for real } s \to 1+.$$

Definition 7.1.9: For $x \in \mathbb{R}$ we denote the number of primes $\leq x$ by $\pi(x)$.

Corollary 7.1.10: There is no $\varepsilon > 0$ such that for $x \to \infty$ we have

$$\pi(x) = O\Big(\frac{x}{(\log x)^{1+\varepsilon}}\Big).$$

In particular there exist infinitely many primes.

7.2 Dedekind zeta function

Fix a number field K of degree n over \mathbb{Q} .

Definition 7.2.1: The *Dedekind zeta function of* K is defined by the series

$$\zeta_K(s) := \sum_{\mathfrak{a}} \operatorname{Nm}(\mathfrak{a})^{-s},$$

where the sum extends over all non-zero ideals $\mathfrak{a} \subset \mathcal{O}_K$.

Proposition 7.2.2: This series converges absolutely and locally uniformly for all $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$ and defines a holomorphic function there, and we have the *Euler product*

$$\zeta_K(s) = \prod_{\mathfrak{p}} (1 - \operatorname{Nm}(\mathfrak{p})^{-s})^{-1} \neq 0,$$

extended over all maximal ideals $\mathfrak{p} \subset \mathcal{O}_K$.

Proposition 7.2.3: We have

$$\log \zeta_K(s) = \sum_{\mathfrak{p}} \operatorname{Nm}(\mathfrak{p})^{-s} + (\text{holomorphic for } \operatorname{Re}(s) > \frac{1}{2}).$$

Theorem 7.2.4: The function $\zeta_K(s)$ extends uniquely to a meromorphic function on the region $\operatorname{Re}(s) > 1 - \frac{1}{n}$ which is holomorphic except for a pole of order 1 at s = 1.

Proposition 7.2.5: We have

$$\sum_{\mathfrak{p}} \operatorname{Nm}(\mathfrak{p})^{-s} = \log \frac{1}{s-1} + O(1) \text{ for real } s \to 1+s$$

Corollary 7.2.6: There exist infinitely many rational primes that split totally in \mathcal{O}_K .

7.3 Analytic class number formula

As before we set $\Sigma := \text{Hom}(K, \mathbb{C})$ and let r be the number of embeddings $K \hookrightarrow \mathbb{R}$ and s the number of pairs of complex conjugate non-real embeddings $K \hookrightarrow \mathbb{C}$. With $K_{\mathbb{C}} := \mathbb{C}^{\Sigma}$ and

$$K_{\mathbb{R}} := \{ (z_{\sigma})_{\sigma} \in K_{\mathbb{C}} \mid \forall \sigma \in \Sigma \colon z_{\bar{\sigma}} = \bar{z}_{\sigma} \}$$

as in $\S3.4$ we then have

$$K_{\mathbb{R}} \cap \mathbb{R}^{\Sigma} = \{ (t_{\sigma})_{\sigma} \in \mathbb{R}^{\Sigma} \mid \forall \sigma \in \Sigma \colon t_{\bar{\sigma}} = t_{\sigma} \}.$$

The \mathbb{R} -subspace

$$H := \ker \left(\operatorname{Tr} \colon K_{\mathbb{R}} \cap \mathbb{R}^{\Sigma} \to \mathbb{R} \right)$$

from §5.2 therefore becomes a euclidean vector space by its embedding $H \subset K_{\mathbb{R}} \subset K_{\mathbb{C}}$ and the scalar product from §4.1. By §2.2 it is thus endowed with a canonical translation invariant measure d vol. Recall from Theorem 5.3.1 that $\Gamma := \ell(j(\mathcal{O}_K^{\times}))$ is a complete lattice in H.

Definition 7.3.1: The *regulator of* K is the real number

$$R := \operatorname{vol}(H/\Gamma) > 0.$$

Let $w := |\mu(K)|$ denote the number of roots of unity in K and let $h := |\operatorname{Cl}(\mathcal{O}_K)|$ the class number.

Theorem 7.2.7: Analytic class number formula: The residue of $\zeta_K(s)$ at s = 1 is

$$\operatorname{Res}_{s=1} \zeta_K(s) = \frac{2^r (2\pi)^s Rh}{w \sqrt{|d_K|}} > 0.$$

7.4 Dirichlet density

Consider a number field K and a subset A of the set P of maximal ideals of \mathcal{O}_K .

Definition 7.4.1: (a) The value

$$\overline{\mu}(A) := \limsup_{s \to 1+} \frac{\sum_{\mathfrak{p} \in A} \operatorname{Nm}(\mathfrak{p})^{-s}}{\sum_{\mathfrak{p} \in P} \operatorname{Nm}(\mathfrak{p})^{-s}}$$

is called the upper Dirichlet density of A.

(b) The value

$$\underline{\mu}(A) := \liminf_{s \to 1+} \frac{\sum_{\mathfrak{p} \in A} \operatorname{Nm}(\mathfrak{p})^{-s}}{\sum_{\mathfrak{p} \in P} \operatorname{Nm}(\mathfrak{p})^{-s}}$$

is called the *lower Dirichlet density of* A.

(c) If these coincide, their common value

$$\mu(A) := \lim_{s \to 1+} \frac{\sum_{\mathfrak{p} \in A} \operatorname{Nm}(\mathfrak{p})^{-s}}{\sum_{\mathfrak{p} \in P} \operatorname{Nm}(\mathfrak{p})^{-s}}$$

is called the Dirichlet density of A.

Proposition 7.4.2: (a) We have $0 \leq \underline{\mu}(A) \leq \overline{\mu}(A) \leq 1$.

- (b) For any subset $B \subset A$ we have $\overline{\mu}(B) \leq \overline{\mu}(A)$ and $\underline{\mu}(B) \leq \underline{\mu}(A)$, and also $\mu(B) \leq \mu(A)$ if these exist.
- (c) We have $\mu(A) = 0$ if A is finite.
- (d) We have $\mu(A) = 1$ if $P \smallsetminus A$ is finite.
- (e) For any disjoint subsets $A, B \subset P$, if two of $\mu(A), \mu(B), \mu(A \cup B)$ exist, then so does the third and we have $\mu(A) + \mu(B) = \mu(A \cup B)$.

Proposition-Definition 7.4.3: If the *natural density of* A

$$\gamma(A) := \lim_{x \to \infty} \frac{\left| \{ \mathfrak{p} \in A \mid \operatorname{Nm}(\mathfrak{p}) \leqslant x \} \right|}{\left| \{ \mathfrak{p} \in P \mid \operatorname{Nm}(\mathfrak{p}) \leqslant x \} \right|}$$

exists, so does the Dirichlet density $\mu(A)$ and they are equal.

7.5 Primes of absolute degree 1

Definition 7.5.1: The *absolute degree* of a prime \mathfrak{p} of \mathcal{O}_K is the degree of $k(\mathfrak{p})$ over its prime field.

Proposition 7.5.2: The set of primes of absolute degree 1 has Dirichlet density 1.

Proposition 7.5.3: A subset $A \subset P$ has a Dirichlet density if and only if the set of all $\mathfrak{p} \in A$ of absolute degree 1 has a Dirichlet density, and then they are equal.

For any finite galois extension of number fields L/K we let $\text{Split}_{L/K}$ denote the set of primes $\mathfrak{p} \subset \mathcal{O}_K$ that are totally split in \mathcal{O}_L .

Proposition 7.5.4: Split_{L/K} has Dirichlet density $\frac{1}{[L/K]}$. In particular it is infinite.

Now consider two finite galois extensions of number fields L, L'/K.

Proposition 7.5.5: Then $\text{Split}_{LL'/K} = \text{Split}_{L/K} \cap \text{Split}_{L'/K}$.

Proposition 7.5.6: The following are equivalent:

- (a) $L \subset L'$.
- (b) $\operatorname{Split}_{L'/K} \subset \operatorname{Split}_{L/K}$.
- (c) $\mu(\operatorname{Split}_{L'/K} \smallsetminus \operatorname{Split}_{L/K}) < \frac{1}{2[L/K]}.$

Proposition 7.5.7: The following are equivalent:

- (a) L = L'.
- (b) $\operatorname{Split}_{L'/K}$ and $\operatorname{Split}_{L/K}$ differ only by a set of Dirichlet density 0.

In particular, a number field K that is galois over \mathbb{Q} is uniquely determined by the set of rational primes p that split totally in K.

7.6 Dirichlet *L*-series

- **Definition 7.6.1:** (a) A homomorphism $\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ is called a *Dirichlet character of modulus* $N \ge 1$.
 - (b) The conductor of such χ is the smallest divisor N'|N such that χ factors through a homomorphism $(\mathbb{Z}/N'\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$.
 - (c) Such χ is called *primitive* if N' = N.
 - (d) Such χ is called *principal* if N' = 1, that is, if χ is the trivial homomorphism.

Convention 7.6.2: Often one identifies a Dirichlet character χ of modulus N with a function $\chi \colon \mathbb{Z} \to \mathbb{C}$ by setting

$$\chi(a) := \begin{cases} \chi(a \mod (N)) & \text{if } \gcd(a, N) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Caution 7.6.3: When the conductor N' is smaller than the modulus N, one has to be somewhat careful with the divisors of N/N'.

Example: For any prime p the Legendre symbol defines a Dirichlet character $a \mapsto \left(\frac{a}{p}\right)$ of modulus p.

Definition 7.6.4: The *Dirichlet L-function* associated to any Dirichlet character χ is

$$L(\chi,s) := \sum_{n \ge 1} \chi(n) n^{-s}.$$

Proposition 7.6.5: This series converges absolutely and locally uniformly for all $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$ and defines a holomorphic function there.

Proposition 7.6.6: For all $\operatorname{Re}(s) > 1$ we have the *Euler product*

$$L(\chi, s) = \prod_{p \nmid N} (1 - \chi(p)p^{-s})^{-1}.$$

Proposition 7.6.7: If a Dirichlet character χ of modulus N corresponds to a primitive Dirichlet character χ' of modulus N', then

$$L(\chi', s) = L(\chi, s) \cdot \prod_{p \mid N, p \nmid N'} (1 - p^{-s})^{-1}.$$

Proposition 7.6.8: (a) For the principal Dirichlet character χ of modulus 1 we have $L(\chi, s) = \zeta(s)$.

(b) For every non-principal Dirichlet character χ the function $L(\chi, s)$ extends uniquely to a holomorphic function on the region Re(s) > 0.

Theorem 7.6.9: The zeta function $\zeta_K(s)$ of the field $K := \mathbb{Q}(\mu_N)$ is the product of the *L*-functions $L(\chi, s)$ for all primitive Dirichlet characters χ of conductor dividing N.

Theorem 7.6.10: For any non-principal Dirichlet character χ we have $L(\chi, 1) \neq 0$.

Proposition 7.6.11: For any non-principal Dirichlet character χ we have

$$\sum_{p \text{ prime}} \chi(p) p^{-s} = O(1) \text{ for real } s \to 1+.$$

7.7 Primes in arithmetic progressions

Theorem 7.7.1: For any coprime integers a and $N \ge 1$ the set of rational primes $p \equiv a \mod (N)$ has Dirichlet density $\frac{1}{\varphi(N)}$. In particular it is infinite.

This can also be viewed as the special case $L = \mathbb{Q}(\mu_N)$ and $K = \mathbb{Q}$ of the following general theorem:

Theorem 7.7.2: Cebotarev density theorem: Let L/K be a Galois extension of number fields with Galois group Γ . For any $\gamma \in \Gamma$ consider its conjugacy class $O_{\Gamma}(\gamma) := \{\gamma' \gamma \mid \gamma' \in \Gamma\}$. Then the set of primes $\mathfrak{p} \subset \mathcal{O}_K$ that are unramified in \mathcal{O}_L and whose Frobenius substitution lies in $O_{\Gamma}(\gamma)$ has the Dirichlet density $\frac{|\mathcal{O}_{\Gamma}(\gamma)|}{|\Gamma|}$.

References

- Atiyah, M. F., MacDonald, I. G.: Introduction to Commutative Algebra, Westview Press, 1969.
- Hungerford, T.W.: *Algebra*. Springer 1974
- Neukirch, Jürgen: Algebraic Number Theory. Springer 1999.