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To prove Proposition 6.8.2 in general use the following facts from commutative algebra:

• For any prime ideal p of a ring A the set S := A ∖ p is multiplicative and the ring Ap := S−1p is
called the localization of A at p.

• For any ideal a ⊂ A the set ap := S−1a is an ideal of Ap.

Now assume that A is Dedekind and that a is a maximal ideal.

• Then Ap is a principal ideal domain.

• For any nonzero ideals a, a′ ⊂ A we have ap = a′p if and only if the exponents of p in the prime
factorizations of a and a′ coincide.

Now let B be the integral closure of A in a finite separable extension L/Quot(A).

• Then Bp := S−1B is a principal ideal domain.

• The formation of discB/A and diffB/A and the relative ideal norm commutes with localization at p.



7 Zeta functions

7.1 Riemann zeta function

Definition 7.1.1: The Riemann zeta function is defined by the series

ζ(s) :=
∞∑
n=1

n−s.

Proposition 7.1.2: This series converges absolutely and locally uniformly for all s ∈ C with Re(s) > 1

and defines a holomorphic function there.



Lemma 7.1.3: For all Re(s) > 1 we have

ζ(s) =
s

s− 1
− s ·

∫ ∞

1

(x− ⌊x⌋)x−s−1 dx.

Proposition 7.1.4: The function ζ(s) − 1
s−1

extends uniquely to a holomorphic function on the region
Re(s) > 0.

Remark 7.1.5: It is known that ζ(s) extends uniquely to a meromorphic function on C with a single
pole at s = 1. This extension is again denoted by ζ(s).



Throughout the following we use the branch of the logarithm with log 1 = 0.

Proposition 7.1.6: An infinite product of non-zero complex numbers
∏

k⩾1 zk converges to a non-zero
value if and only if lim

k!∞
zk = 1 and

∑
k⩾1

log zk converges.

Proposition 7.1.7: For all Re(s) > 1 we have the Euler product

ζ(s) =
∏

p prime

(1− p−s)−1 ̸= 0.



Proposition 7.1.8: We have ∑
p prime

p−s = log 1
s−1

+O(1) for real s ! 1+.

Definition 7.1.9: For x ∈ R we denote the number of primes ⩽ x by π(x).

Corollary 7.1.10: There is no ε > 0 such that for x ! ∞ we have

π(x) = O
( x

(log x)1+ε

)
.

In particular there exist infinitely many primes.



7.2 Dedekind zeta function

Fix a number field K of degree n over Q.

Definition 7.2.1: The Dedekind zeta function of K is defined by the series

ζK(s) :=
∑
a

Nm(a)−s,

where the sum extends over all non-zero ideals a ⊂ OK .

Proposition 7.2.2: This series converges absolutely and locally uniformly for all s ∈ C with Re(s) > 1

and defines a holomorphic function there, and we have the Euler product

ζK(s) =
∏
p

(
1− Nm(p)−s

)−1 ̸= 0,

extended over all maximal ideals p ⊂ OK .



Proposition 7.2.3: We have

log ζK(s) =
∑
p

Nm(p)−s +
(
holomorphic for Re(s) > 1

2

)
.



Theorem 7.2.4: The function ζK(s) extends uniquely to a meromorphic function on the region
Re(s) > 1− 1

n
which is holomorphic except for a pole of order 1 at s = 1.

Proposition 7.2.5: We have∑
p

Nm(p)−s = log 1
s−1

+O(1) for real s ! 1+.

Corollary 7.2.6: There exist infinitely many rational primes that split totally in OK .



7.3 Analytic class number formula

As before we set Σ := Hom(K,C) and let r be the number of embeddings K ↪! R and s the number of
pairs of complex conjugate non-real embeddings K ↪! C. With KC := CΣ and

KR := {(zσ)σ ∈ KC
∣∣ ∀σ ∈ Σ: zσ̄ = z̄σ}

as in §3.4 we then have
KR ∩ RΣ = {(tσ)σ ∈ RΣ

∣∣ ∀σ ∈ Σ: tσ̄ = tσ}.

The R-subspace
H := ker

(
Tr: KR ∩ RΣ ! R

)
from §5.2 therefore becomes a euclidean vector space by its embedding H ⊂ KR ⊂ KC and the scalar
product from §4.1. By §2.2 it is thus endowed with a canonical translation invariant measure d vol. Recall
from Theorem 5.3.1 that Γ := ℓ(j(O×

K)) is a complete lattice in H.

Definition 7.3.1: The regulator of K is the real number

R := vol(H/Γ) > 0.

Let w := |µ(K)| denote the number of roots of unity in K and let h := |Cl(OK)| the class number.



Theorem 7.2.7: Analytic class number formula: The residue of ζK(s) at s = 1 is

Ress=1 ζK(s) =
2r(2π)sRh

w
√

|dK |
> 0.



7.4 Dirichlet density

Consider a number field K and a subset A of the set P of maximal ideals of OK .

Definition 7.4.1: (a) The value

µ(A) := lim sup
s!1+

∑
p∈A Nm(p)−s∑
p∈P Nm(p)−s

is called the upper Dirichlet density of A.

(b) The value

µ(A) := lim inf
s!1+

∑
p∈A Nm(p)−s∑
p∈P Nm(p)−s

is called the lower Dirichlet density of A.

(c) If these coincide, their common value

µ(A) := lim
s!1+

∑
p∈A Nm(p)−s∑
p∈P Nm(p)−s

is called the Dirichlet density of A.



Proposition 7.4.2: (a) We have 0 ⩽ µ(A) ⩽ µ(A) ⩽ 1.

(b) For any subset B ⊂ A we have µ(B) ⩽ µ(A) and µ(B) ⩽ µ(A), and also µ(B) ⩽ µ(A) if these exist.

(c) We have µ(A) = 0 if A is finite.

(d) We have µ(A) = 1 if P ∖ A is finite.

(e) For any disjoint subsets A,B ⊂ P , if two of µ(A), µ(B), µ(A ∪B) exist, then so does the third and
we have µ(A) + µ(B) = µ(A ∪B).



Proposition-Definition 7.4.3: If the natural density of A

γ(A) := lim
x!∞

∣∣{p ∈ A | Nm(p) ⩽ x}
∣∣∣∣{p ∈ P | Nm(p) ⩽ x}
∣∣

exists, so does the Dirichlet density µ(A) and they are equal.



7.5 Primes of absolute degree 1

Definition 7.5.1: The absolute degree of a prime p of OK is the degree of k(p) over its prime field.

Proposition 7.5.2: The set of primes of absolute degree 1 has Dirichlet density 1.

Proposition 7.5.3: A subset A ⊂ P has a Dirichlet density if and only if the set of all p ∈ A of absolute
degree 1 has a Dirichlet density, and then they are equal.



For any finite galois extension of number fields L/K we let SplitL/K denote the set of primes p ⊂ OK that
are totally split in OL.

Proposition 7.5.4: SplitL/K has Dirichlet density 1
[L/K]

. In particular it is infinite.

Now consider two finite galois extensions of number fields L,L′/K.

Proposition 7.5.5: Then SplitLL′/K = SplitL/K ∩ SplitL′/K .



Proposition 7.5.6: The following are equivalent:

(a) L ⊂ L′.

(b) SplitL′/K ⊂ SplitL/K .

(c) µ(SplitL′/K ∖ SplitL/K) <
1

2[L/K]
.

Proposition 7.5.7: The following are equivalent:

(a) L = L′.

(b) SplitL′/K and SplitL/K differ only by a set of Dirichlet density 0.

In particular, a number field K that is galois over Q is uniquely determined by the set of rational primes
p that split totally in K.



7.6 Dirichlet L-series

Definition 7.6.1: (a) A homomorphism χ : (Z/NZ)× ! C× is called a Dirichlet character of modulus
N ⩾ 1.

(b) The conductor of such χ is the smallest divisor N ′|N such that χ factors through a homomorphism
(Z/N ′Z)× ! C×.

(c) Such χ is called primitive if N ′ = N .

(d) Such χ is called principal if N ′ = 1, that is, if χ is the trivial homomorphism.

Convention 7.6.2: Often one identifies a Dirichlet character χ of modulus N with a function χ : Z ! C
by setting

χ(a) :=

{
χ(a mod (N)) if gcd(a,N) = 1,

0 otherwise.

Caution 7.6.3: When the conductor N ′ is smaller than the modulus N , one has to be somewhat careful
with the divisors of N/N ′.

Example: For any prime p the Legendre symbol defines a Dirichlet character a 7!
(
a
p

)
of modulus p.



Definition 7.6.4: The Dirichlet L-function associated to any Dirichlet character χ is

L(χ, s) :=
∑
n⩾1

χ(n)n−s.

Proposition 7.6.5: This series converges absolutely and locally uniformly for all s ∈ C with Re(s) > 1

and defines a holomorphic function there.

Proposition 7.6.6: For all Re(s) > 1 we have the Euler product

L(χ, s) =
∏
p ∤N

(1− χ(p)p−s)−1.



Proposition 7.6.7: If a Dirichlet character χ of modulus N corresponds to a primitive Dirichlet character
χ′ of modulus N ′, then

L(χ′, s) = L(χ, s) ·
∏

p|N, p ∤N ′

(1− p−s)−1.

Proposition 7.6.8: (a) For the principal Dirichlet character χ of modulus 1 we have L(χ, s) = ζ(s).

(b) For every non-principal Dirichlet character χ the function L(χ, s) extends uniquely to a holomorphic
function on the region Re(s) > 0.



Theorem 7.6.9: The zeta function ζK(s) of the field K := Q(µN) is the product of the L-functions
L(χ, s) for all primitive Dirichlet characters χ of conductor dividing N .



Theorem 7.6.10: For any non-principal Dirichlet character χ we have L(χ, 1) ̸= 0.

Proposition 7.6.11: For any non-principal Dirichlet character χ we have∑
p prime

χ(p)p−s = O(1) for real s ! 1+.



7.7 Primes in arithmetic progressions

Theorem 7.7.1: For any coprime integers a and N ⩾ 1 the set of rational primes p ≡ a mod (N) has
Dirichlet density 1

φ(N)
. In particular it is infinite.



This can also be viewed as the special case L = Q(µN) and K = Q of the following general theorem:

Theorem 7.7.2: Cebotarev density theorem: Let L/K be a Galois extension of number fields with Galois
group Γ. For any γ ∈ Γ consider its conjugacy class OΓ(γ) := {γ′

γ | γ′ ∈ Γ}. Then the set of primes
p ⊂ OK that are unramified in OL and whose Frobenius substitution lies in OΓ(γ) has the Dirichlet density
|OΓ(γ)|

|Γ| .
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