1 Some commutative algebra

1.1 Integral ring extensions

All rings are assumed to be commutative and unitary. Consider a ring extension $A \subset B$.
Definition 1.1.1:
(a) An element $b \in B$ is called integral over A if there exists a monic $f \in A[X]$ with $f(b)=0$.
(b) The ring B is called integral over A if every $b \in B$ is integral over A.
(c) The integral closure of A in B is the set $\tilde{A}:=\{b \in B \mid b$ integral over $A\}$.

Definition-Example 1.1.2:

(a) An element $z \in \mathbb{C}$ is integral over \mathbb{Q} if and only if z is an algebraic number.
(b) An element $z \in \mathbb{C}$ is integral over \mathbb{Z} if and only if z is an algebraic integer.

Proposition 1.1.3: The following statements for an element $b \in B$ are equivalent:
(a) b is integral over A.
(b) The subring $A[b] \subset B$ is finitely generated as an A-module.
(c) b is contained in a subring of B which is finitely generated as an A-module.

Poof: (a) $\Rightarrow(b):$ Say $b^{n}+a_{1} d^{n-1}+\ldots+a_{n}=0$ when $a_{i} \in A$.

$$
\Rightarrow \quad \forall m \geqslant n \quad: \quad b^{m}+a, b^{m-1}+\ldots+a_{n} b^{m-n}=0
$$

2 ch sin on $m \Rightarrow$ Each $b^{m}<A b^{n-1}+\ldots+A \Rightarrow A[b]$ gen. $b y$, $1, b, \ldots, b^{n-1}$.

$$
(b) \Rightarrow(c): \quad \delta \in A[8] .
$$

(c) $\Rightarrow(a): \operatorname{Say} b \in A^{\prime} \mathrm{gn} . \mathrm{b}^{\prime} b_{1}^{\prime}, \ldots, b_{n}^{\prime}$ as A - module.

Wive $b b_{i}^{\prime}=\sum_{j=1}^{n} a_{i j} b_{j}^{\prime}$ with $a_{i j} \in \mathcal{A}$.

$$
\begin{aligned}
& n:=\left\langle b \cdot \delta_{i j}-a_{i j}\right\rangle_{i, j} \Rightarrow n \cdot\left(\begin{array}{c}
y_{1} \\
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0
\end{array}\right) \cdot \\
& \tilde{n}:=a_{j} m \Delta t \text { of } n \Rightarrow \operatorname{dot}(n) \cdot\left(\begin{array}{l}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)=\tilde{n} \cdot n \cdot\left(\begin{array}{l}
b_{1}^{1} \\
\vdots \\
\vdots
\end{array}\right)=\left(\begin{array}{l}
0 \\
\vdots \\
0
\end{array}\right)
\end{aligned}
$$

$$
\Rightarrow \quad \operatorname{dat}|n| \cdot 1=0 ; \quad n=b \cdot I_{d_{n}}-N
$$

$\left.\Rightarrow \Delta=\operatorname{let}(\eta)=\operatorname{det}\left\langle b \cdot I_{n}-N\right)=\ln \operatorname{cor}_{N}(b)\right] \rightarrow\langle a\rangle$.
$\operatorname{chas}_{N}(K) \in A[K]$ mani<
que.

Proposition 1.1.4: (a) For any integral ring extensions $A \subset B$ and $B \subset C$ the ring extension $A \subset C$ is integral.
(b) The subset \tilde{A} is a subring of B that contains A.
(c) The subring \tilde{A} is its own integral closure in B.

Prof: (a) $\forall c \in C$: Charm $b_{i} \in A$ with $c^{n}+b_{1} c^{n-1}+\ldots+b_{n}=0$.
$\Rightarrow \operatorname{each} A\left[b_{i}\right] i \operatorname{li} \cdot \operatorname{gen}$. as A - us ante, my by $1, b_{i}, \ldots, b_{i}^{N}$
$\rightarrow \stackrel{W}{C}$ integral an A.
(b) $\forall a \in A, f(a)=0$ ho $f(x)=X-a \in A[x] \Rightarrow a \in \tilde{A}$.

$$
\Rightarrow 1 \in \tilde{A}, \forall \delta, b^{\prime} \in \tilde{A}: A\left[b, b^{\prime}\right] R \cdot \operatorname{gen} . \text { is } A-\ldots \text { due }
$$

$$
b+b^{\prime}, b \cdot b^{\prime} \Rightarrow \quad b+\sigma^{\prime}, b \cdot b^{\prime} \in \vec{A}
$$

(c) $] f b \in B$ is ital an \tilde{A}, wit $b^{n}+\tilde{a}_{1}, b^{n-1}+\ldots+\tilde{A}_{n}=0$ win $\tilde{a}_{i} \in \tilde{A}$.
$\Rightarrow A\left[\tilde{a}_{1}, \ldots, \tilde{a}_{n}\right] \& A \cdot \operatorname{sen} A-$ roche
$\Rightarrow \quad A\left[\tilde{a}_{1}, \longrightarrow \tilde{a}^{2}, b\right]$
$\Rightarrow \frac{L}{b}$ intrude $\operatorname{ar} A \Rightarrow b \in \hat{A}$.
ged.

$$
\begin{aligned}
& \Rightarrow A\left[\delta_{1}, \ldots, b_{n}\right] \ldots \ldots b_{i=1}^{\prod_{i}} b_{i}^{\nu_{i}} \text { wk } \nu_{i} \leq N . \\
& \Rightarrow A\left[\delta_{1}, \ldots b_{L}, c\right] \ldots-\ldots \text { twas and } c^{\mu} \text { fur } f<n \text {. }
\end{aligned}
$$

1.2 Prime ideals

Consider an integral ring extension $A \subset B$.
Proposition 1.2.1: For every prime ideal $\mathfrak{q} \subset B$ the intersection $\mathfrak{q} \cap A$ is a prime ideal of A.
Poof: $A /$ quA $\longrightarrow B / L_{7}=$ intavel do main.
\Rightarrow lithe dome. gel
Definition 1.2.2: We say that \mathfrak{q} lies over $\mathfrak{q} \cap A$. $\mathcal{4} \cap A=4 \wedge \wedge A$
Theorem 1.2.3: For any prime ideals $\mathfrak{q} \subset \mathfrak{q}^{\prime} \subset B$ over the same \mathfrak{p} we have $\mathfrak{q}=\mathfrak{q}^{\prime}$.

 ane ink dey $\langle f)$ minimal $\Rightarrow f(b)=\underbrace{b^{4}+a, b^{n-1}+\ldots+a_{n-1} \cdot b}+a_{n} \in \sigma_{c}$.

$$
\begin{aligned}
& \Rightarrow{\underset{a}{a}}_{b}^{b} \cdot \underbrace{\left\langle b^{n-1}+a, b^{n-2}+\ldots+a_{n-1}\right\rangle} \leqslant x_{7} .
\end{aligned}
$$

 yod.

Theorem 1.2.4: For every prime ideal $\mathfrak{p} \subset A$ there exists a prime ideal $\mathfrak{q} \subset B$ over \mathfrak{p}.
Poof: \& pies \Rightarrow Avg maltiph lithic
$\Delta \in g \quad \Rightarrow \quad \Delta \notin A \mathcal{g}$.
Let y be the set of μ il ilene ha CB
win $b \wedge\langle A \mid g\rangle=\varnothing$.
$\Rightarrow \ln A<g$.
lana : I posen a max. clemens, ad eng min cleat is pine.
Poof: $(0) \in \mathcal{J}$. Fan en y chan $\phi \neq J<\mathcal{Y}$
tate $b:=\cup J K . \Rightarrow \&<B$ ied in \mathcal{J}.
Zoan's le \Rightarrow prom a max. thunk 7 .
If $1 \in \Psi$ the $1 \in g ~ \rightarrow$ contain to $7 \in B$.
Tam b $j^{\prime} \in B \backslash \log \sim h_{\text {max. }}$ ob' $\leqslant 4$

$\Rightarrow(q+b y)\left(q^{\prime}+\delta^{\prime} y^{\prime}\right)=a a^{\prime} \in$ 办 ${ }^{\prime} z$.

Tak $\boldsymbol{q}_{1} \in \mathscr{I}$ maxial \Rightarrow y $\subset B$ pine.

$$
\begin{aligned}
& a=q+b c \text { wik } q \in \mathbb{F}, c \in B \text {. }
\end{aligned}
$$

$\Rightarrow c$ intoug on A. Wirn $c^{n}+a c^{n-1}+\ldots+a_{0}=D$ nich $a_{i} \in \mathbb{A}$

$$
\begin{aligned}
& \Rightarrow \quad[b c)^{n}+a, b\langle b c)^{n-1}+b^{n}+b^{n} . a_{n}=0 . \\
& \Rightarrow \quad(a-q)^{n}+a, b(a-q)^{n-1}+\ldots+\delta^{n} a_{n}=0 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Whe } q=7, a, a ; b \in A
\end{aligned}
$$

$$
\begin{aligned}
& b \in g . \Rightarrow a^{n} \in g \Rightarrow a \in \mathcal{F} \text {. Corthili! }
\end{aligned}
$$

See Iturgerford: Agshn.

1.4 Localization

Definition 1.4.1: A subset $S \subset A \backslash\{0\}$ is called multiplicative if it contains 1 and is closed under multiplication.

Definition-Proposition 1.4.2: For any multiplicative subset $S \subset A$ the subset

$$
S^{-1} A:=\left\{\left.\frac{a}{s} \right\rvert\, a \in A, s \in S\right\}
$$

is a subring of K that contains A and is called the localization of A with respect to S.

Example 1.4.3: For every prime ideal $\mathfrak{p} \subset A$ the subset $A \backslash \mathfrak{p}$ is multiplicative. The ring $A_{\mathfrak{p}}:=(A \backslash \mathfrak{p})^{-1} A$ is called the localization of A at \mathfrak{p}.

$$
\begin{aligned}
& f \neq A \Rightarrow 1 \in A V j \\
& \forall a, d \in A \cdot g: a b y \Rightarrow a b \in A \cdot \mathcal{J} .
\end{aligned}
$$

Proposition 1.4.4: For every multiplicative subset $S \subset A$ we have:
(a) $S^{-1} \tilde{A}=\widetilde{S^{-1} A}$.
(b) If A is normal, then so is $S^{-1} A$.

