
Reminder:

Consider a ring extension A � B.

Definition 1.1.1:

(a) An element b ⇥ B is called integral over A if there exists a monic f ⇥ A[X] with f(b) = 0.

(b) The ring B is called integral over A if every b ⇥ B is integral over A.

(c) The integral closure of A in B is the set Ã := {b ⇥ B | b integral over A}.

Proposition 1.1.4:

(b) The subset Ã is a subring of B that contains A.

(c) The subring Ã is its own integral closure in B.



1.3 Normalization

From now on we assume that A is an integral domain with quotient field K.

Definition 1.3.1: (a) The integral closure of A in K is called the normalization of A.

(b) The ring A is called normal if this normalization is A.

Proposition 1.3.2: (a) The normalization of A is normal.

(b) Any unique factorization domain is normal.



1.4 Localization

Definition 1.4.1: A subset S � A � {0} is called multiplicative if it contains 1 and is closed under
multiplication.

Definition-Proposition 1.4.2: For any multiplicative subset S � A the subset

S
�1
A :=

�
a
s

⇥⇥ a ⇥ A, s ⇥ S
⇤

is a subring of K that contains A and is called the localization of A with respect to S.

Example 1.4.3: For every prime ideal p � A the subset A�p is multiplicative. The ring Ap := (A�p)�1
A

is called the localization of A at p.

Proposition 1.4.4: For every multiplicative subset S � A we have:

(a) S
�1
Ã = Ŝ�1A.

(b) If A is normal, then so is S
�1
A.





1.5 Field extensions

In the following we consider a normal integral domain A with quotient field K, and an algebraic field
extension L/K, and let B be the integral closure of A in L.

Proposition 1.5.1: For any homomorphism � : L ! M of field extensions of K, an element x ⇥ L is
integral over A if and only if �(x) is integral over A.

Proposition 1.5.2: An element x ⇥ L is integral over A if and only if the minimal polynomial of x over K
has coe⇥cients in A.



Proposition 1.5.3: We have (A� {0})
�1
B = L.



1.6 Norm and Trace

Assume that L/K is finite separable. Let K̄ be an algebraic closure of K.

Definition 1.6.1: For any x ⇥ L we consider the K-linear map Tx : L ! L, u 7! ux.

(a) The norm of x for L/K is the element NmL/K(x) := det(Tx) ⇥ K.

(b) The trace of x for L/K is the element TrL/K(x) := tr(Tx) ⇥ K.

Proposition 1.6.2: (a) For any x, y ⇥ L we have NmL/K(xy) = NmL/K(x) · NmL/K(y).

(b) The map NmL/K induces a homomorphism L
◊ ! K

◊.

(c) The map TrL/K : L ! K is K-linear.



Proposition 1.6.3: For any x ⇥ L we have

NmL/K(x) =

Y

�⇥HomK(L,K̄)

�(x) and TrL/K(x) =

X

�⇥HomK(L,K̄)

�(x).

Proposition 1.6.4: The map TrL/K : L ! K is non-zero.



Proposition 1.6.5: For any two finite separable field extensions M/L/K we have:

(a) NmL/K ⇤NmM/L = NmM/K .

(b) TrL/K ⇤TrM/L = TrM/K .

Proposition 1.6.6: For any x ⇥ B we have:

(a) NmL/K(x) ⇥ A.

(b) NmL/K(x) ⇥ A
◊ if and only if x ⇥ B

◊.

(c) TrL/K(x) ⇥ A.



1.7 Discriminant

Proposition 1.7.1: The map
L◊ L �! K, (x, y) 7! TrL/K(x)

is a non-degenerate symmetric K-bilinear form.

Lemma 1.7.2: Write HomK(L, K̄) = {�1, . . . , �n} with [L/K] = n and consider the matrix T :=

(�i(bj))i,j=1,...,n. Then
T

T
· T =

⌅
TrL/K(bibj)

⇧
i,j=1,...,n

.

Definition 1.7.3: The discriminant of any ordered basis (b1, . . . , bn) of L over K is the determinant of
the associated Gram matrix

disc(b1, . . . , bn) := det
⌅
TrL/K(bibj)

⇧
i,j=1,...,n

= det(T )
2 ⇥ K.



Proposition 1.7.4: If L = K(b) and n = [L/K], then disc(1, b, . . . , b
n�1

) is the discriminant of the
minimal polynomial of b over K.

Proposition 1.7.5: (a) We have disc(b1, . . . , bn) ⇥ K
◊.

(b) If b1, . . . , bn ⇥ B, then disc(b1, . . . , bn) ⇥ A� {0} and

B � 1

disc(b1, . . . , bn)
·
⌅
Ab1 + . . .+ Abn

⇧
.
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