Reminder:

Consider a ring extension $A \subset B$.

Definition 1.1.1:

(a) An element $b \in B$ is called integral over A if there exists a monic $f \in A[X]$ with $\underline{f(b)=0}$.
(b) The ring B is called integral over A if every $b \in B$ is integral over A.
(c) The integral closure of A in B is the set $\tilde{A}:=\{b \in B \mid b$ integral over $A\}$.

Proposition 1.1.4:

(b) The subset \tilde{A} is a subring of B that contains A.
(c) The subrin\& \tilde{A} is its own integral closure in B.
1.3 Normalization

From now on we assume that A is an integral domain with quotient field K.
Definition 1.3.1: (a) The integral closure of A in K is called the normalization of A.
(b) The ring A is called normal if this normalization is A.

Proposition 1.3.2: (a) The normalization of A is normal.
(b) Any unique factorization domain is normal.
 unit in At pries in A.
Span aver $प_{j}<0$.
Jun $b^{n}+a, b^{n-1}+\ldots+x_{n}=0$ with $a_{i} \in A$.

$$
\Rightarrow \quad u^{n} \cdot \prod_{i} p_{i}^{u_{i}^{n}}+a_{1} u^{n-1} \Pi l p_{i}^{\nu_{i}^{(n-1)}}+\ldots t a_{n}=0
$$

Naively b, $\bar{L}_{i \neq j} P i^{\max \left(0_{1}-\Delta_{j}\right) \cdot n} \cdot \mathrm{P}_{j}^{-v_{j} n}$
 $E A$

$$
\angle A
$$

1.4 Localization

Definition 1.4.1: A subset $S \subset A \backslash\{0\}$ is called multiplicative if it contains 1 and is closed under multiplication.

Definition-Proposition 1.4.2: For any multiplicative subset $S \subset A$ the subset

$$
S^{-1} A:=\left\{\left.\frac{a}{s} \right\rvert\, a \in A, s \in S\right\}
$$

is a subring of K that contains A and is called the localization of A with respect to S.
Pup: $\frac{a}{7} E S^{-1} A, \quad 1=\frac{1}{7} E S^{-1} A, \quad \frac{a}{5} \cdot \frac{a^{\prime}}{5^{\prime}}=\frac{a a^{\prime}}{55^{\prime}}, \frac{a}{5}+\frac{a^{\prime}}{s^{\prime}}=\frac{a 5^{\prime}+a^{\prime} 5}{55^{\prime}}$ E $\bar{S}^{-1} A$ red

Example 1.4.3: For every prime ideal $\mathfrak{p} \subset A$ the subset $A \backslash \mathfrak{p}$ is multiplicative. The ring $A_{\mathfrak{p}}:=(A \backslash \mathfrak{p})^{-1} A$ is called the localization of A at \mathfrak{p}.

Proposition 1.4.4: For every multiplicative subset $S \subset A$ we have:
(a) $S^{-1}(\tilde{A})=\widetilde{S^{-1} A}$.
(b) If A is normal, then so is $S^{-1} A$.

Parl [a]: $\forall b \in \tilde{A}: b^{n}+a_{i} b^{n-1}+\ldots+a_{n}=0 \quad$ wit $a_{i} \in A$

Tore $c \in\left(S^{-1} A\right)^{n}$, win $C^{n}+u_{1} c^{n-1}+\ldots+n_{n}=0$ wis $n_{i} \in J^{\prime \prime} A$.
Una $n_{i}=\frac{\sigma_{i}}{5}$ with $a_{i} \in A, S E S$.

$$
\begin{aligned}
& \Rightarrow \quad\left(5[)^{n}+5 n_{1}(5 c)^{n-1}+\ldots+5^{n} n_{n}=0\right. \\
& \Rightarrow \quad(5 c)^{n}+n_{1}(5 c)^{n-1}+\ldots+\underbrace{\delta^{n-1} a_{n}}=0 \\
& \Rightarrow \quad 5 c \in \tilde{A} \Rightarrow=\frac{5<}{5}=j^{-1} \underset{\sim}{\infty} .
\end{aligned}
$$

qed.
1.5 Field extensions

In the following we consider a normal integral domain A with quotient field K, and an algebraic field extension L / K, and let B be the integral closure of A in L.

Proposition 1.5.1: For any homomorphism $\sigma: L \rightarrow M$ of field extensions of K, an element $x \in L$ is integral over A if and only if $\sigma(x)$ is integral over A.

Pup: $\forall f \in A[x]$ nance : | $f(\sigma(x))=\sigma(f(x))$ | |
| ---: | :--- |
| $u_{0}^{u} \Leftrightarrow$ | |
| 0 | 0 |

Proposition 1.5.2: An element $x \in L$ is integral over A if and only if the minimal polynomial of x over K has coefficients in A.
Pup: $r(x)=\prod_{\sigma \in \text { Ht om }_{k}(L, \bar{k})}(x-\sigma(x)\rangle^{d}$ in $\bar{k}[x]$.
If x iintual ar A, them to are all $5(x)$.
\Rightarrow the whet: erin of $\mu(x)$ are inhere w $A] \Rightarrow$ lie $\leqslant A$.

Proposition 1.5.3: We have $(A \backslash\{0\})^{-1} B=L$.
Prof: $\forall y \in L$. Shame $x_{1}, \ldots, x_{n} \in K$ with $y^{n}+x_{1} y^{n-1}+\ldots+x_{n}=0$.
wrench $x_{i}=\frac{a_{i}}{s}$ wit $a_{i} \in A, S E A \backslash[D]$.

$$
\begin{aligned}
& \Rightarrow \quad(5 y)^{n}+\underbrace{5 x_{1}(5 y)^{n-1}+\ldots+\underbrace{5^{n} x_{n}}=0}_{E A} \\
& \Rightarrow \quad 5 y \in A \Rightarrow \quad y=\frac{5 y}{5} \in[A-\{0\}]^{-1} B .
\end{aligned}
$$

ged.
1.6 Norm and Trace

Assume that L / K is finite separable. Let \bar{K} be an algebraic closure of K.
Definition 1.6.1: For any $x \in L$ we consider the K-linear map $T_{x}: L \rightarrow L, u \mapsto u x$.
(a) The norm of x for L / K is the element $\operatorname{Nm}_{L / K}(x):=\operatorname{det}\left(T_{x}\right) \in K$.
(b) The trace of x for L / K is the element $\operatorname{Tr}_{L / K}(x):=\operatorname{tr}\left(T_{x}\right) \in K$.

Proposition 1.6.2: (a) For any $x, y \in L$ we have $\mathrm{Nm}_{L / K}(x y)=\mathrm{Nm}_{L / K}(x) \cdot \mathrm{Nm}_{L / K}(y)$.
(b) The map $\mathrm{Nm}_{L / K}$ induces a homomorphism $L^{\times} \rightarrow K^{\times}$.
(c) The map $\operatorname{Tr}_{L / K}: L \rightarrow K$ is K-linear.

Pall: (a) $T_{x y}=T_{x} \cdot T_{y} \Rightarrow \operatorname{det}\left(T_{x y}\right)=\operatorname{det}\left\langle T_{x}\right) \cdot \operatorname{det}\left\langle T_{>}\right\rangle$.
(b) $x \neq 0 \Rightarrow T_{x}$ bijistive $\Rightarrow \operatorname{sit}\left\langle T_{x}\right\rangle \neq 0$.

$$
\text { (c) } \begin{aligned}
& T_{x+y}=T_{x}+T_{y} \Rightarrow \operatorname{dr}\left[T_{x+y}\right)=\alpha\left(T_{x}\right)+\operatorname{dr}\left(T_{y}\right) \\
& \forall a \in K: T_{a x}=a \cdot T_{x} \Rightarrow \operatorname{dr}\left(T_{a x}\right)=a \cdot \alpha\left\langle T_{x}\right| .
\end{aligned}
$$

zed.

Proposition 1.6.3: For any $x \in L$ we have

$$
\begin{aligned}
& \text { Puf: Whir } k^{\prime}:=k(x) \Rightarrow \text { min. i.e } r(x)=\prod_{\sigma \in \operatorname{tin} k_{k}\left(k^{\prime}, \bar{k}\right)} \text { 〈X }
\end{aligned}
$$

$$
\left[L / K^{\prime}\right]=d \Rightarrow \text { chor.Re. \& } T_{x} \text { is } \prod_{n}(X-\sigma(x))^{d}=\prod(X-\sigma(x))
$$

$$
L \cong\left\langle k_{G}^{\prime}\right\rangle^{d}
$$

Proposition 1.6.4: The map $\operatorname{Tr}_{L / K}: L \rightarrow K$ is non-zero.
ged.
Phof: The $\sigma \in$ thonk $\langle L, \bar{K})$ we K-lisert inderpent.

$$
\Rightarrow \sum_{\sigma \in H_{k}(L, \bar{k})} \sigma \neq 0 .
$$

ged

Proposition 1.6.5: For any two finite separable field extensions $M / L / K$ we have:
(a) $\mathrm{Nm}_{L / K} \circ \mathrm{Nm}_{M / L}=\mathrm{Nm}_{M / K}$.
(b) $\operatorname{Tr}_{L / K} \circ \operatorname{Tr}_{M / L}=\operatorname{Tr}_{M / K}$.
<-Mamsin \sum

Fin call $\rho \leqslant\left(\mathrm{Km}_{\mathrm{m}}\right.$ (L, $\left.\bar{k}\right)$
chan exain $\hat{\rho} \in \operatorname{lom}\langle n, \bar{k}\rangle$

$$
\begin{aligned}
& \rho \in_{k}^{H_{m}}(L, \bar{L}) \text { rethmek }(n, \bar{K}) \\
& =\prod_{\rho}\left(\prod_{\tau \in \operatorname{MnL}_{L}(n, \bar{k})}^{\sigma} \tilde{\rho} \tau\langle x\rangle\right) \\
& L \supset B \exists x
\end{aligned}
$$

(c) $\operatorname{Tr}_{L / K}(x) \in A$.

$$
A \text { nul } \Rightarrow E A
$$

(b) $x \in B^{K} \Rightarrow x^{-1} E B \Rightarrow N_{L / k}\left\langle x^{-1}\right) \in A ; A_{A^{x}} ; N_{L K}\langle x| \cdot \mu_{L} / u^{\left(x^{-1}\right)}=1$.
1.7 Discriminant

Proposition 1.7.1: The map

$$
L \times L \longrightarrow K, \quad(x, y) \mapsto \operatorname{Tr}_{L / K}(x y)
$$

is a non-degenerate symmetric K-bilinear form.
 ser.

Lemma 1.7.2: Write $\operatorname{Hom}_{K}(L, \bar{K})=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ with $[L / K]=n$ and consider the matrix $T:=$ $\left(\sigma_{i}\left(b_{j}\right)\right)_{i, j=1, \ldots, n}$. Then Guan Radix Note: $T \in \operatorname{lut}_{n \times-1}\langle\bar{R}\rangle$

$$
T^{T} \cdot T=\left(\operatorname{Tr}_{L / K}\left(b_{i} b_{j}\right)\right)_{i, j=1, \ldots, n} \in \operatorname{Max}_{n \times<}\langle r \downarrow
$$

$$
\sum_{k} \sum \sigma_{k}\left\langle d_{i} J_{j}\right\rangle=T_{\text {Lick }}\left\langle d_{i} b_{j}\right\rangle \text {. F } d{ }_{-}
$$

Definition 1.7.3: The discriminant of any ordered basis $\left(b_{1}, \ldots, b_{n}\right)$ of L over K is the determinant of the associated Gram matrix

$$
\underline{\operatorname{disc}\left(b_{1}, \ldots, b_{n}\right):=\operatorname{det}\left(\operatorname{Tr}_{L / K}\left(b_{i} b_{j}\right)\right)_{i, j=1, \ldots, n}=\operatorname{det}(T)^{2} \in K}
$$

Proposition 1.7.4: If $L=K(b)$ and $n=[L / K]$, then $\operatorname{disc}\left(1, b, \ldots, b^{n-1}\right)$ is the discriminant of the minimal polynomial of b over K.

$$
\begin{aligned}
& P_{\text {flf }}=\operatorname{dot}\langle\tau\rangle=\operatorname{det}\left\langle\sigma_{i}\left(j^{j-1}\right)\right)_{i, j}=\operatorname{set}\left\langle\sigma_{i}\langle b\rangle^{j-1}\right)_{i, j} \\
& =\Pi\left[\left\lfloor\sigma_{j}\langle(\})-\sigma_{i}\langle(\})\right] .\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Vablermonde }
\end{aligned}
$$

Proposition 1.7.5: (a) We have $\operatorname{disc}\left(b_{1}, \ldots, b_{n}\right) \in K^{\times}$.
(b) If $b_{1}, \ldots, b_{n} \in B$, then $\operatorname{disc}\left(b_{1}, \ldots, b_{n}\right) \in A \backslash\{0\}$ and
\ll

$$
B \subset \frac{1}{\operatorname{disc}\left(b_{1}, \ldots, b_{n}\right)} \cdot\left(A b_{1}+\ldots+A b_{n}\right)
$$

< U. $b_{i} \in \mathbb{B} \Rightarrow$ liscl. $-d_{i}-$) intandar A, in $K \Rightarrow$ is in A.
\cdots unt $\frac{1}{7}$ 〈a〕.
(c) Taks $y \in B$; win $y=\sum_{j} \delta_{j} y_{j}$ with y_{j} EK.

$$
\Rightarrow \operatorname{Tahe}_{i}:=T_{r / k}(\underbrace{\left.\delta_{i} y\right)}_{E B}=\sum_{j} T_{n_{L / K}}\left(b_{i} b_{j}\right) y_{j}^{\prime}=
$$

$$
\begin{aligned}
& \Rightarrow \underline{x}:=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\underbrace{\left.\left\langle T_{n}\right| k\left\langle b_{i} j_{j}\right\rangle\right)_{i, j}}_{n .} \cdot \underbrace{\left(\begin{array}{c}
y_{1} \\
\vdots \\
z_{n}
\end{array}\right)}_{\underline{y}} \quad \underline{x}=n \cdot \underline{y} \\
& \tilde{n}:=\operatorname{bict} f n \Rightarrow \tilde{n} \cdot \underline{x}=\tilde{n} \cdot n \cdot \underline{y}=\operatorname{dot}(n) \cdot \underline{y}=\operatorname{Lin}\left(t_{1, ~}, l_{n}\right) \cdot \underline{y} \\
& x_{i} \in A . \Rightarrow \quad y=\frac{1}{h_{i}<\left[b_{1}, S_{-}\right]} \cdot \underbrace{\hat{n} \cdot \underline{x}}_{\text {no }} . \\
& \Rightarrow b=\sum_{j} b_{j} y_{j} \in \frac{1}{\alpha_{i}\left(b_{1}, b_{2}\right)} \cdot \sum_{j=1}^{n} \delta_{j} A .
\end{aligned}
$$

qed.

