
Reminder:

We consider a principal ideal domain A with quotient field K, a finite separable field extension L/K, and
let B be the integral closure of A in L.

Definition 1.7.3: The discriminant of any ordered basis (b1, . . . , bn) of L over K is the determinant of
the associated Gram matrix

disc(b1, . . . , bn) := det
�
TrL/K(bibj)

⇥
i,j=1,...,n

� K.

Proposition 1.7.4: If L = K(b) and n = [L/K], then disc(1, b, . . . , b
n�1

) is the discriminant of the
minimal polynomial of b over K.

Proposition 1.7.5: (a) We have disc(b1, . . . , bn) � K
◊.

(b) If b1, . . . , bn � B, then disc(b1, . . . , bn) � A� {0} and

B ⇥ 1

disc(b1, . . . , bn)
·
�
Ab1 + . . .+ Abn

⇥
.



Proposition 1.7.6: If A is a principal ideal domain, then:

(a) B is a free A-module of rank [L/K].

(b) For any basis (b1, . . . , bn) of B over A, the number disc(b1, . . . , bn) is independent of the basis up to
the square of an element of A◊.

Definition 1.7.7: This number is called the discriminant of B over A or of L over K and is denoted
discB/A or discL/K .



1.8 Linearly disjoint extensions

Definition 1.8.1: Two finite separable field extensions L,L
⇥
/K are called linearly disjoint if L ⇤K L

⇥ is
a field.

Proposition 1.8.2: For any two finite separable field extensions L,L
⇥
/K within a common overfield M

the following statements are equivalent:

(a) L and L
⇥ are linearly disjoint over K.

(b) [LL
⇥
/K] = [L/K] · [L

⇥
/K]

(c) [LL
⇥
/L] = [L

⇥
/K]

(d) [LL
⇥
/L

⇥
] = [L/K]

If at least one of L/K and L
⇥
/K is galois, they are also equivalent to

(e) L ⌅ L
⇥
= K.



Theorem 1.8.3: Consider linearly disjoint finite separable field extensions L,L
⇥
/K. Assume that A is a

principal ideal domain and that d := discL/K and d
⇥
:= discL�/K are relatively prime in A. Let B,B

⇥
, B̃ be

the integral closures of A in L,L
⇥
, LL

⇥. Then:

(a) B ⇤A B
⇥ ⇤
! B̃.

(b) discLL�/K = d
[L�/K]

· d
⇥[L/K] up to the square of a unit in A.





1.9 Dedekind Rings

Definition 1.9.1: (a) A ring A is noetherian if every ideal is finitely generated.

(b) An integral domain A has Krull dimension 1 if it is not a field and every non-zero prime ideal is a
maximal ideal.

(c) A noetherien normal integral domain of Krull dimension 1 is called a Dedekind ring.

Proposition 1.9.2: Any principal ideal domain that is not a field is a Dedekind ring.

Examples 1.9.3: Take A = Z or A = Z[i] or A = k[t] or A = k[[t]] for a field k.



In the following we assume that A ⇥ K is Dedekind and that B ⇥ L is as above.

Proposition 1.9.4: (a) For every multiplicative subset S ⇥ A the ring S
�1
A is Dedekind or a field.

(b) For every prime ideal 0 ⇧= p ⇥ A the localization Ap is a discrete valuation ring.

Theorem 1.9.5: The ring B is Dedekind and finitely generated as an A-module.



1.10 Fractional Ideals

Definition 1.10.1:

(a) A non-zero finitely generated A-submodule of K is called a fractional ideal of A.

(b) A fractional ideal of the form (x) := Ax for some x � K
◊ is called principal.

(c) The product of two fractional ideals a, b is defined as

ab :=
⇤Pr

i=1 aibi

⌅⌅ r � 0, ai � a bi � b
⇧
.

(d) The inverse of a fractional ideal a is defined as

a�1
=

⇤
x � K

⌅⌅ x · a ⇥ A
⇧
.

Proposition 1.10.2: For any fractional ideals a, b, c we have:

(a) There exist a, b � A� {0} with (a) ⇥ a ⇥ (
1
b ).

(b) ab and a�1 are fractional ideals.

(c) ab = ba and (ab)c = a(bc) and (1)a = a.

(d) a ⇥ A if and only if A ⇥ a�1.


