Reminder:

We consider a principal ideal domain A with quotient field K, a finite separable field extension L/K, and let B be the integral closure of A in L.

Definition 1.7.3: The *discriminant* of any ordered basis (b_1, \ldots, b_n) of L over K is the determinant of the associated *Gram matrix*

$$\operatorname{disc}(b_1,\ldots,b_n) := \left(\operatorname{det}\left(\operatorname{Tr}_{L/K}(b_i b_j)\right)_{i,j=1,\ldots,n} \in K.\right)$$

Proposition 1.7.4: If L = K(b) and n = [L/K], then $\operatorname{disc}(1, b, \dots, b^{n-1})$ is the discriminant of the minimal polynomial of b over K.

Proposition 1.7.5: (a) We have $\operatorname{disc}(b_1, \ldots, b_n) \in K^{\times}$.

(b) If $b_1, \ldots, b_n \in B$, then $\underline{\operatorname{disc}(b_1, \ldots, b_n) \in A \setminus \{0\}}$ and

$$B \subset \frac{1}{\operatorname{disc}(b_1,\ldots,b_n)} \cdot (\underline{Ab_1 + \ldots + Ab_n}).$$

Proposition 1.7.6: If A is a principal ideal domain, then:

- (a) B is a free A-module of rank [L/K].
- (b) For any basis (b_1, \ldots, b_n) of B over A, the number $\underline{\operatorname{disc}(b_1, \ldots, b_n)}$ is independent of the basis up to the square of an element of A^{\times} .

Definition 1.7.7: This number is called the *discriminant of B over A* or *of L over K* and is denoted $\operatorname{disc}_{B/A}$ or $\operatorname{disc}_{L/K}$.

$$\frac{\operatorname{Ping}:(a) \forall b_{n_{1} \dots b_{n_{n}}} b_{n} \in B \quad bain \notin L = b(C : \frac{1}{\operatorname{Wi}(b_{1,n_{n}} b_{n})} - \frac{(Ab_{1} + \ldots + Ab_{n})}{(Ab_{1} + \ldots + Ab_{n})}$$

$$\frac{Ab_{1} + \ldots + Ab_{n}}{kee A \cdot \operatorname{undele}} \qquad 1 \qquad bho$$

$$\frac{d}{de} A \cdot \operatorname{undele} \qquad fi \quad \operatorname{undele} = bee A \cdot \operatorname{undele}$$

1.8 Linearly disjoint extensions

Definition 1.8.1: Two finite separable field extensions L, L'/K are called *linearly disjoint* if $L \otimes_K L'$ is a field.

Proposition 1.8.2: For any two finite separable field extensions L, L'/K within a common overfield M the following statements are equivalent:

- (a) L and L' are linearly disjoint over K.
- (b) $[LL'/K] = [L/K] \cdot [L'/K]$
- (c) [LL'/L] = [L'/K]
- (d) [LL'/L'] = [L/K]

If at least one of L/K and L'/K is galois, they are also equivalent to

(e) $L \cap L' = K$.

 $\begin{array}{c} \in \mathbf{X}_{\mathbf{x}_{1}} & \mathbb{Q}\left(\sqrt{2}\right), \mathbb{Q}\left(\sqrt{2}\right) \\ \mathbb{Q}\left(\sqrt{2}\right) & \mathbb{Q}\left(\sqrt{2}\right) \rightarrow \mathbb{Q}\left(\sqrt{2},\sqrt{2}\right) \end{array}$ Q(V2) Q(32) $Q(3\Sigma) = Q(3\Sigma \cdot e^{\frac{2\pi}{3}})$ NOT LIN. DISTOINT $\rightarrow a(x_1, e^{\frac{3\pi}{3}})$ a (3) ⊗ a (32 e³⁾ _ 6 $G(\sqrt[3]{2}) \cap G(\sqrt[3]{2}, e^{\frac{2\pi i}{3}}) = G$

Theorem 1.8.3: Consider linearly disjoint finite separable field extensions L, L'/K. Assume that A is a principal ideal domain and that $d := \operatorname{disc}_{L/K}$ and $d' := \operatorname{disc}_{L'/K}$ are relatively prime in A. Let B, B', \tilde{B} be the integral closures of A in L, L', LL'. Then: $LL' = L \neq L'$ (a) $B \otimes_A B' \xrightarrow{\sim} \tilde{B}$. (b) $\operatorname{disc}_{LL'/K} = d^{[L'/K]} \cdot d'^{[L/K]}$ up to the square of a unit in A. Purf: Let birs be be a barning B and A] = they are bars of [[] and K. $= \left\{ \begin{array}{c} b_{i} \otimes b_{j}^{i} \mid \frac{1}{1} \underbrace{b_{i} \leq h} \\ 1 \underbrace{b_{i} \otimes b_{j}^{i} \mid \frac{1}{1} \underbrace{b_{i} \leq h}} \\ 1 \underbrace{b_{i} \otimes b_{j}^{i} \mid \frac{1}{1} \underbrace{b_{i} \leq h}} \\ 1 \underbrace{b_{i} \otimes b_{j}^{i} \mid \frac{1}{1} \underbrace{b_{i} \leq h}} \\ 1 \underbrace{b_{i} \otimes b_{j}^{i} \mid \frac{1}{1} \underbrace{b_{i} \otimes h}} \\ 1 \underbrace{b_{i} \otimes b_{j}^{i} \mid \frac{1}{1} \underbrace{b_{i} \otimes h}} \\ 1 \underbrace{b_{i} \otimes b_{j}^{i} \mid \frac{1}{1} \underbrace{b_{i} \otimes h}} \\ 1 \underbrace{b_{i} \otimes b_{j}^{i} \mid \frac{1}{1} \underbrace{b_{i} \otimes h}} \\ 1 \underbrace{b_{i} \otimes b_{j}^{i} \mid \frac{1}{1} \underbrace{b_{i} \otimes b_{j}^{i} \mid \frac{1}{1} \underbrace{b_{i} \otimes h}} \\ 1 \underbrace{b_{i} \otimes b_{j}^{i} \mid \frac{1}{1} \underbrace{b_{i} \otimes b_{j}^{i} \mid \frac{1}{1} \underbrace{b_{i} \otimes h}} \\ 1 \underbrace{b_{i} \otimes b_{j}^{i} \mid \frac{1}{1} \underbrace{b_{i} \otimes b_{j}^{i} \mid \frac{1}{$ 0. Clam: $\forall i j : A : a_{ij} \in A$. $f_{mp}: \cup h \quad \delta = \sum_{i=1}^{n} c_{ij} b_{i} \quad mk \quad c_{j} = \sum_{i=1}^{n} a_{ij} b_{i} \in L$. How $(LL', \overline{k}) = \{\overline{t_{7, -7}}, \overline{t_{u'}}\} \xrightarrow{\sim} Hom_k(L', \overline{k}),$ $T' = [\overline{t_i(k_i)}]_{ijk=1...u'} \Rightarrow d' = dut(T')^2, Put \subseteq := (\stackrel{k_i}{c_{u'}}) \in L'$ $\tau' \underline{c} = \left(\sum_{i} \tau_i(t_i) \cdot c_j \right)_{\underline{c} = u_i} = \left(\tau_i \left(\sum_{i} t_i' \cdot c_i \right)_{\underline{c}} = \left(\tau_i(t_i) \right)_{\underline{c}} = (\tau_i(t_i))_{\underline{c}} = u_i$

$$\begin{aligned} \vec{\tau}' \quad dy_{i} \neq q \quad \tau' \implies d_{i} \ell(\tau') \cdot \underline{c} = \vec{\tau}' \cdot \tau' \cdot \underline{c} = \vec{\tau}' \cdot \underline{r}' \\ \implies d_{i} \cdot \underline{c} = d_{i} \ell(\tau') \cdot \vec{\tau}' \cdot \underline{s} \\ = d_{i} \cdot \underline{c} \in \mathbb{B} \\ \xrightarrow{F_{i}} \quad d_{i} \cdot \underline{b}_{i} = d_{i} \cdot \underline{c}_{j} \in \mathbb{B} \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad \text{and} \quad d_{i} = d_{i} \cdot \underline{c} \in \mathbb{B} \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad \text{and} \quad d_{i} = d_{i} \cdot \underline{c} \in \mathbb{B} \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad \text{and} \quad d_{i} = d_{i} \cdot \underline{c} \in \mathbb{B} \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad \text{and} \quad d_{i} = d_{i} \cdot \underline{c} \in \mathbb{B} \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad d_{i} \cdot \underline{c} \in A \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad d_{i} \cdot \underline{c}_{i} \in A \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad d_{i} \cdot \underline{c} \in A \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad d_{i} \cdot \underline{c} \in A \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad d_{i} \cdot \underline{c} \in A \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad d_{i} \cdot \underline{c}_{i} \in A \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad d_{i} \cdot \underline{c}_{i} \in A \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad d_{i} \cdot \underline{c}_{i} \in A \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad d_{i} \cdot \underline{c}_{i} \in A \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad d_{i} \cdot \underline{c}_{i} \in A \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad d_{i} \cdot \underline{c}_{i} \in A \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad d_{i} \cdot \underline{c}_{i} \in A \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad d_{i} \cdot \underline{c}_{i} \in A \\ \xrightarrow{A_{i}} \quad d_{i} \cdot \underline{c}_{i} \in A \quad d_{i} \cdot \underline{c}_{i} = A \quad d_{i} \cdot \underline{c}_{i} \cdot \underline{c} \cdot \underline{c}_{i} \cdot \underline{c} \cdot$$

1.9 Dedekind Rings

Definition 1.9.1: (a) A ring A is *noetherian* if every ideal is finitely generated.

(b) An integral domain A has Krull dimension 1 if it is not a field and every non-zero prime ideal is a maximal ideal.

(c) A noetherien normal integral domain of Krull dimension 1 is called a *Dedekind ring*. **Proposition 1.9.2:** Any principal ideal domain that is not a field is a <u>Dedekind ring</u>.

Examples 1.9.3: Take $A = \mathbb{Z}$ or $A = \mathbb{Z}[i]$ or A = k[t] or A = k[[t]] for a field k.

$$A \subset K$$
 is Dedekind and that $B \subset L$ is as above.
 $M = int \cdot closen \neq K$

In the following we assume that $A \subset K$ is Dedekind and that $B \subset L$ is as above.

Proposition 1.9.4: (a) For every multiplicative subset $S \subset A$ the ring $S^{-1}A$ is Dedekind or a field.

(b) For every prime ideal $0 \neq \mathfrak{p} \subset A$ the localization $A_{\mathfrak{p}}$ is a discrete valuation ring.

Theorem 1.9.5: The ring *B* is Dedekind and finitely generated as an *A*-module.

1.10 Fractional Ideals

Definition 1.10.1:

(a) A non-zero finitely generated A-submodule of K is called a *fractional ideal of* A.

- (b) A fractional ideal of the form (x) := Ax for some $x \in K^{\times}$ is called *principal*.
- (c) The *product* of two fractional ideals $\mathfrak{a}, \mathfrak{b}$ is defined as

$$\mathbf{ab} := \left\{ \sum_{i=1}^r a_i b_i \mid r \ge 0, \ a_i \in \mathfrak{a}, b_i \in \mathfrak{b} \right\}.$$

(d) The *inverse* of a fractional ideal \mathfrak{a} is defined as

$$\mathfrak{a}^{-1} = \{ x \in K \mid x \cdot \mathfrak{a} \subset A \}.$$

Proposition 1.10.2: For any fractional ideals $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ we have:

- (a) There exist $a, b \in A \setminus \{0\}$ with $(a) \subset \mathfrak{a} \subset (\frac{1}{b})$.
- (b) \mathfrak{ab} and \mathfrak{a}^{-1} are fractional ideals.
- (c) $\mathfrak{ab} = \mathfrak{ba}$ and $(\mathfrak{ab})\mathfrak{c} = \mathfrak{a}(\mathfrak{bc})$ and $(1)\mathfrak{a} = \mathfrak{a}$.
- (d) $\mathfrak{a} \subset A$ if and only if $A \subset \mathfrak{a}^{-1}$.

Quet (A).

11