
Reminder:

Let A be a Dedekind ring, that is, a noetherien normal integral domain of Krull dimension 1.

Theorem 1.10.5: Any non-zero ideal of A is a product of maximal ideals and the factors are unique up
to permutation. (Unique factorization of ideals)

Theorem 1.10.6: (a) The set JA of fractional ideals is an abelian group with the above product and
inverse and the unit element (1) = A.

(b) The group JA is the free abelian group with basis the maximal ideals of A.



1.11 Ideals

Consider any non-zero ideals a, b � A.

Definition 1.11.1: We write b|a and say that b divides a if and only if a � b.

Proposition 1.11.2: For any a, b ⇥ A� {0} we have b|a if and only if (b)|(a).

Proposition 1.11.3: We have b|a if and only if there is a non-zero ideal c � A with bc = a.



Definition 1.11.4: Ideals a, b � A with a+ b = A are called coprime.

Proposition 1.11.5: For any non-zero ideals a, b � A the following are equivalent:

(a) a and b are coprime.

(b) Their factorizations in maximal ideals do not have a common factor.

(c) a ⇤ b = ab.



Chinese Remainder Theorem 1.11.6: For any pairwise coprime ideals a1, . . . , ar � A we have a ring
isomorphism

A/a1 · · · ar
� // A/a1 ◊ . . .◊ A/ar,

a+ a1 · · · ar
� // (a+ a1, . . . , a+ ar).



Proposition 1.11.7: For any fractional ideals a � b there exists b ⇥ b with b = a+ (b).

Proposition 1.11.8: Every fractional ideal of A is generated by 2 elements.

Proposition 1.11.9: For any non-zero ideal a and any fractional ideal b of A there exists an isomorphism
of A-modules A/a ⌅= b/ab.



1.12 Ideal class group

Definition 1.12.1: The factor group

Cl(A) :=
�
fractional ideals

⇥ ⇤ �
principal ideals

⇥

is called the ideal class group of A. Its order h(A) := |Cl(A)| is called the class number of A.

Proposition 1.12.2: Any ideal class is represented by a non-zero ideal of A.

Proposition 1.12.3: There is a fundamental exact sequence

1 // A◊ // K◊ // JA // Cl(A) // 1.



2 Minkowski’s lattice theory

2.1 Lattices

Fix a finite dimensional R-vector space V .

Proposition 2.1.1: There exists a unique topology on V such that for any basis v1, . . . , vn of V the
isomorphism Rn ! V , (xi)i 7!

Pn
i=1 xivi is a homeomorphism.

Definition 2.1.2: A subset X � V is called ...

(a) ... bounded if and only if the corresponding subset of Rn is bounded.

(b) ... discrete if and only if the corresponding subset of Rn is discrete, that is, if its intersection with
any bounded subset is finite.



Now we are interested in an (additive) subgroup � � V .

Definition-Proposition 2.1.3: The following are equivalent:

(a) � is discrete.

(b) � =
Lm

i=1 Zvi for R-linearly independent elements v1, . . . , vm.

Such a subgroup is called a lattice.



Definition-Proposition 2.1.4: The following are equivalent:

(a) � is discrete and there exists a bounded subset ⇥ � V such that �+ ⇥ = V .

(b) � is discrete and V/� is compact.

(c) � =
Ln

i=1 Zvi for an R-basis v1, . . . , vn of V .

Such a subgroup is called a complete lattice.


