Reminder:

Fix a finite dimensional \mathbb{R}-vector space V and an (additive) subgroup $\Gamma \subset V$.
Definition-Proposition 2.1.3: The following are equivalent:
(a) Γ is discrete.

(b) $\Gamma=\bigoplus_{i=1}^{m} \mathbb{Z} v_{i}$ for \mathbb{R}-linearly independent elements v_{1}, \ldots, v_{m}.

Such a subgroup is called a lattice.
Definition-Proposition 2.1.4: The following are equivalent:
(a) Γ is discrete and there exists a bounded subset $\Phi \subset V$ such that $\Gamma+\Phi=V$.
(b) Γ is discrete and V / Γ is compact.
(c) $\Gamma=\bigoplus_{i=1}^{n} \mathbb{Z} v_{i}$ for an \mathbb{R}-basis v_{1}, \ldots, v_{n} of V.

Such a subgroup is called a complete lattice.

In the following we consider a lattice $\Gamma \subset V$.
Definition 2.1.5: Any measurable subset $\Phi \subset V$ such that $\Phi \rightarrow V / \Gamma$ is bijective is called a fundamental domain for Γ.

Example 2.1.6: If $\Gamma=\bigoplus_{i=1}^{n} \mathbb{Z} v_{i}$ for an \mathbb{R}-basis v_{1}, \ldots, v_{n} of V, a fundamental domain is:

$$
\Phi:=\left\{\left.\sum_{i=1}^{n} \begin{array}{c}
x_{i} v_{i} \\
v_{i}
\end{array} \right\rvert\, \forall i: 0 \leqslant x_{i}<1\right\} .
$$

Caution 2.1.7: If $V \neq 0$, there does not exist a compact fundamental domain, because there is a problem with the boundary.
2.2 Volume

Now we fix a scalar product \langle,$\rangle on V$.
Proposition 2.2.1: (a) There exists a unique Lebesgue measure $d \mathrm{vol}$ on V such that for any measurable function f on V and any orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of \bar{V} we have
(b) For any \mathbb{R}-basis $\left(v_{1}, \ldots, v_{n}\right)$ of V we then have

$$
\operatorname{vol}\left(\left\{\sum_{i=1}^{n}{ }^{x_{i} \text { 心. }_{i}} \mid \forall i: \quad 0 \leqslant x_{i}<1\right\}\right)=\sqrt{\operatorname{det}\left(\left\langle\text { ai }_{i}, x_{j}^{j}\right\rangle\right)_{i, j=1}^{n}}
$$

and

$$
\begin{array}{r}
\int_{V} f(v) d \operatorname{vol}(v)=\int_{\mathbb{R}^{n}} \frac{f\left(\sum_{i=1}^{n} y_{i} v_{i}\right)}{\uparrow} d y_{1} \ldots d y_{n} \cdot \sqrt{\left.\left.\sqrt{\operatorname{det}\left(\left\langle x_{i}, x_{j}\right\rangle\right.}\right\rangle\right)_{i, j=1}^{n}} . \\
\mathbb{R}^{n} \xrightarrow{\sim} V \text { isomeof } \mathbb{R} \text {-ve-help<es. }
\end{array}
$$

Definition-Proposition 2.2.2: Consider any fundamental domain $\Phi \subset V$.
(a) For any measurable function f on V / Γ this integral is independent of Φ :
(b) In particular we obtain

$$
\int_{V / \Gamma} f(\bar{v}) d \operatorname{vol}(\bar{v}):=\int_{\Phi} f(v+\Gamma) d \operatorname{vol}(v)
$$

$$
\underline{\operatorname{vol}(V / \Gamma)}:=\int_{V / \Gamma} 1 d \operatorname{vol}(\bar{v})=\operatorname{vol}(\Phi) .
$$

Fact 2.2.3: We have $\operatorname{vol}(V / \Gamma)<\infty$ if and only if Γ is a complete lattice.
2.3 Lattice Point Theorem

Let Γ be a complete lattice in a finite dimensional euclidean vector space V.
Definition 2.3.1: A subset $X \subset V$ is centrally symmetric if and only if

Theorem 2.3.2: Let $X \subset V$ be a centrally symmetric convex subset which satisfies

$$
\operatorname{vol}(X)>2^{\operatorname{dim}(V)} \cdot \operatorname{vol}(V / \Gamma) .
$$

Then $X \cap \Gamma$ contains a non-zero element.
Pup: Sot $x^{\prime}:=\left\{\left.\frac{x}{2} \right\rvert\, x \in X\right\}$. Then va $\left(x^{\prime}\right)>$ val (V / r).
Let Φ be a hal. Louis $\Rightarrow x^{\prime}=\bigcup_{\Delta \in T}^{1} x_{\wedge}^{\prime}\left(\Phi_{+\gamma}\right)$

$$
\begin{aligned}
& \Rightarrow \exists x, x^{\prime} \in x^{\prime}: x-\gamma=x^{\prime}-\gamma^{\prime} \\
& \Rightarrow \quad\{0\} \Rightarrow+-\gamma^{\prime}=x-x^{\prime} \in X^{\prime}+x^{\prime}=X \quad \left\lvert\, \begin{array}{l}
2 x, 2 x^{\prime} \in X \Rightarrow-2 x^{\prime} \in X \\
\end{array} \quad \Rightarrow \frac{x-x^{\prime}=\frac{2 x+\left(-2 x^{\prime}\right)}{2} \in X}{\text { qed }} .\right.
\end{aligned}
$$

Remark 2.3.3: The theorem is sharp. For example if $\underline{V=\mathbb{R}^{n}}$ and $\overline{\Gamma=\mathbb{Z}^{n}}$ and $\left.X=\right]-1,1[n$, then we have $\operatorname{vol}(X)=2^{\operatorname{dim}(V)} \cdot \operatorname{vol}(V / \Gamma)$ and $X \cap \Gamma=\{0\}$.

Application 2.3.4: An n-dimensional ball B_{r} of radius r has volume

$$
\operatorname{vol}\left(B_{r}\right)=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)} \cdot r^{n}
$$

Therefore the smallest non-zero vector in Γ has length

$$
\leqslant \frac{2}{\sqrt{\pi}} \cdot \sqrt[n]{\operatorname{vol}(V / \Gamma) \cdot \Gamma\left(\frac{n}{2}+1\right)}
$$

More generally, for every k one can bound the combined lengths of k linearly independent vectors in Γ using successive minima.
Pal f: $\operatorname{al}\left(B_{r}\right)>2^{n} \cdot \operatorname{al}(V / r)$

$$
\begin{aligned}
& \Leftrightarrow \frac{\pi^{n}}{r\left(\frac{n}{2}+1\right)} r^{n}>2^{n} \cdot v l(V / r) \\
& \Leftrightarrow\left(\frac{\sqrt{\pi} \cdot r}{2}\right)^{n}>\operatorname{val}(V / r) \cdot r\left(\frac{n}{2}+1\right) \\
& \Leftrightarrow \quad r>\frac{2}{\sqrt{4}} \cdot \sqrt[n]{r l(V / r) \cdot r\left(\frac{n}{2}+1\right)} \text { yeld. }
\end{aligned}
$$

