
Reminder:
Fix a finite dimensional R-vector space V and an (additive) subgroup � � V .

Definition-Proposition 2.1.3: The following are equivalent:

(a) � is discrete.

(b) � =
Lm

i=1 Zvi for R-linearly independent elements v1, . . . , vm.

Such a subgroup is called a lattice.

Definition-Proposition 2.1.4: The following are equivalent:

(a) � is discrete and there exists a bounded subset ⇥ � V such that �+ ⇥ = V .

(b) � is discrete and V/� is compact.

(c) � =
Ln

i=1 Zvi for an R-basis v1, . . . , vn of V .

Such a subgroup is called a complete lattice.



In the following we consider a lattice � � V .

Definition 2.1.5: Any measurable subset ⇥ � V such that ⇥ ! V/� is bijective is called a fundamental

domain for �.

Example 2.1.6: If � =
Ln

i=1 Zvi for an R-basis v1, . . . , vn of V , a fundamental domain is:

⇥ :=
�Pn

i=1 xi

⇥⇥ ⇥i : 0 � xi < 1
⇤
.

Caution 2.1.7: If V ⇤= 0, there does not exist a compact fundamental domain, because there is a problem
with the boundary.



2.2 Volume

Now we fix a scalar product ⌅ , ⇧ on V .

Proposition 2.2.1: (a) There exists a unique Lebesgue measure dvol on V such that for any measurable
function f on V and any orthonormal basis (e1, . . . , en) of V we have
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f(v) dvol(v) =

Z

Rn

f
⌅Pn

i=1 xiei

⇧
dx1 . . . dxn.

(b) For any R-basis (v1, . . . , vn) of V we then have

vol
⌅
{
Pn

i=1 xi

⇥⇥ ⇥i : 0 � xi < 1}
⇧
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⇧n
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and Z
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f(v) dvol(v) =
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Rn
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⇧n
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.



Definition-Proposition 2.2.2: Consider any fundamental domain ⇥ � V .

(a) For any measurable function f on V/� this integral is independent of ⇥:
Z

V/�

f(v̄) dvol(v̄) :=

Z

⇥

f(v + �) dvol(v).

(b) In particular we obtain

vol(V/�) :=

Z

V/�

1 dvol(v̄) = vol(⇥).

Fact 2.2.3: We have vol(V/�) <⌃ if and only if � is a complete lattice.



2.3 Lattice Point Theorem

Let � be a complete lattice in a finite dimensional euclidean vector space V .

Definition 2.3.1: A subset X � V is centrally symmetric if and only if

X = ⌥X := {⌥x | x � X}.

Theorem 2.3.2: Let X � V be a centrally symmetric convex subset which satisfies

vol(X) > 2
dim(V )

· vol(V/�).

Then X  � contains a non-zero element.



Remark 2.3.3: The theorem is sharp. For example if V = Rn and � = Zn and X =] ⌥ 1, 1[
n, then we

have vol(X) = 2
dim(V )

· vol(V/�) and X  � = {0}.

Application 2.3.4: An n-dimensional ball Br of radius r has volume

vol(Br) =
�n/2

�(n2 + 1)
· r

n
.

Therefore the smallest non-zero vector in � has length

� 2⌦
�
·

n

q
vol(V/�) · �(n2 + 1).

More generally, for every k one can bound the combined lengths of k linearly independent vectors in �

using successive minima.


