Reminder:

Fix a finite dimensional \mathbb{R} -vector space V and an (additive) subgroup $\Gamma \subset V$.

Definition-Proposition 2.1.3: The following are equivalent:

- (a) Γ is discrete.
- (b) $\Gamma = \bigoplus_{i=1}^{m} \mathbb{Z}v_i$ for \mathbb{R} -linearly independent elements v_1, \ldots, v_m .

Such a subgroup is called a *lattice*.

Definition-Proposition 2.1.4: The following are equivalent:

- (a) Γ is discrete and there exists a bounded subset $\Phi \subset V$ such that $\Gamma + \Phi = V$.
- (b) Γ is discrete and V/Γ is compact.
- (c) $\Gamma = \bigoplus_{i=1}^{n} \mathbb{Z}v_i$ for an \mathbb{R} -basis v_1, \ldots, v_n of V.

Such a subgroup is called a *complete lattice*.

Counterexample: 7. O. 7. V2 C R

In the following we consider a lattice $\Gamma \subset V$.

Definition 2.1.5: Any measurable subset $\Phi \subset V$ such that $\Phi \to V/\Gamma$ is bijective is called a *fundamental* domain for Γ .

Example 2.1.6: If $\Gamma = \bigoplus_{i=1}^{n} \mathbb{Z}v_i$ for an \mathbb{R} -basis v_1, \ldots, v_n of V, a fundamental domain is:

$$\Phi := \left\{ \sum_{i=1}^{n} \overset{\mathsf{v}_i \lor \mathsf{v}_i}{\textcircled{\bullet}} \middle| \forall i \colon 0 \leqslant x_i < 1 \right\}.$$

Caution 2.1.7: If $V \neq 0$, there does not exist a compact fundamental domain, because there is a problem with the boundary.

2.2Volume

It ~ V Jicomety

Now we fix a scalar product \langle , \rangle on V.

Proposition 2.2.1: (a) There exists a unique Lebesgue measure dvol on V such that for any measurable function f on V and any orthonormal basis (e_1, \ldots, e_n) of V we have RHS does not chunge inder an whogen d

$$\int_{V} f(v) \, d\mathrm{vol}(v) = \int_{\mathbb{R}^n} f\left(\sum_{i=1}^n x_i e_i\right) dx_1 \dots dx_n.$$

(b) For any \mathbb{R} -basis (v_1, \ldots, v_n) of V we then have

$$\operatorname{vol}\left(\left\{\sum_{i=1}^{n} \overset{}{\underset{}}\right| \forall i \colon 0 \leqslant x_{i} < 1\right\}\right) = \sqrt{\operatorname{det}\left(\langle \boldsymbol{x}_{i}, \boldsymbol{x}_{j} \rangle\right)_{i,j=1}^{n}}$$

and

$$\int_{V} f(v) \, dvol(v) = \int_{\mathbb{R}^{n}} f\left(\sum_{i=1}^{n} y_{i}v_{i}\right) dy_{1} \dots dy_{n} \cdot \sqrt{\det\left(\langle \boldsymbol{w}_{i}, \boldsymbol{w}_{j} \rangle\right)_{i,j=1}^{n}} \cdot \mathbf{v}$$

Definition-Proposition 2.2.2: Consider any fundamental domain $\Phi \subset V$.

(a) For any measurable function f on V/Γ this integral is independent of Φ :

$$\int_{V/\Gamma} f(\bar{v}) \, d\mathrm{vol}(\bar{v}) \ := \ \int_{\Phi} f(v+\Gamma) \, d\mathrm{vol}(v).$$

(b) In particular we obtain

$$\operatorname{vol}(V/\Gamma) := \int_{V/\Gamma} 1 \, d\operatorname{vol}(\bar{v}) = \operatorname{vol}(\Phi).$$

Fact 2.2.3: We have $vol(V/\Gamma) < \infty$ if and only if Γ is a complete lattice.

2.3 Lattice Point Theorem

Let Γ be a complete lattice in a finite dimensional euclidean vector space V. **Definition 2.3.1:** A subset $X \subset V$ is *centrally symmetric* if and only if $X = -X := \{-x \mid x \in X\}.$

Theorem 2.3.2: Let $X \subset V$ be a centrally symmetric convex subset which satisfies

 $\operatorname{vol}(X) > 2^{\dim(V)} \cdot \operatorname{vol}(V/\Gamma).$

 Remark 2.3.3: The theorem is sharp. For example if $V = \mathbb{R}^n$ and $\Gamma = \mathbb{Z}^n$ and $X =]-1, 1[^n$, then we have $\operatorname{vol}(X) = 2^{\dim(V)} \cdot \operatorname{vol}(V/\Gamma)$ and $X \cap \Gamma = \{0\}$.

in IR

Application 2.3.4: An *n*-dimensional ball B_r of radius *r* has volume

$$\operatorname{vol}(B_r) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)} \cdot r^n.$$

Therefore the smallest non-zero vector in Γ has length

$$\leq \frac{2}{\sqrt{\pi}} \cdot \sqrt[n]{\operatorname{vol}(V/\Gamma) \cdot \Gamma(\frac{n}{2}+1)}.$$

More generally, for every k one can bound the combined lengths of k linearly independent vectors in Γ using *successive minima*.

$$\begin{split} & \underset{()}{\overset{\Pi}} \stackrel{\mathcal{H}}{\underset{()}{\overset{\Pi}}} \stackrel{\mathcal{H}}{\underset{()}{\overset{\Pi}}} \stackrel{\mathcal{H}}{\underset{()}{\overset{\Pi}}} \stackrel{\mathcal{H}}{\underset{()}{\overset{()}{\overset{\Pi}}}} \stackrel{\mathcal{H}}{\underset{()}{\overset{()}{\overset{\Pi}}} \stackrel{\mathcal{H}}{\underset{()}{\overset{()}{\overset{\Pi}}} \stackrel{\mathcal{H}}{\underset{()}{\overset{()}}{\overset{()}{\overset{()}{\overset{()}{\overset{()}{\overset{()}{\overset{()}{\overset{()}{\overset{$$