
3 Algebraic integers

3.1 Number fields

Definition 3.1.1: (a) A finite field extension K/Q is called an (algebraic) number field.

(b) A number field of degree 2, 3, 4, 5,... is called quadratic, cubic, quartic, quintic,...

(c) The integral closure OK of Z in K is called the ring of algebraic integers in K.

In the rest of this chapter we fix such K and OK and abbreviate n := [L/K].

Proposition 3.1.2: (a) The ring OK is Dedekind.

(c) OK is a free Z-module of rank n.

(b) Any fractional ideal a of OK is a free Z-module of rank n.



3.2 Absolute discriminant

Proposition 3.2.1: (a) For any Z-submodule � � K of rank n with an ordered Z-basis (x1, . . . , xn) the
following value depends only on �:

disc(�) := disc(x1, . . . , xn) ⇥ Z� {0}.

(b) For any two Z-submodules � � �� � K of rank n the index [��
: �] is finite and we have

disc(�) = [��
: �]2 · disc(��

).



Definition 3.2.2: The number
dK := disc(OK) ⇥ Z� {0}

is called the discriminant of OK or of K.

Corollary 3.2.3: If there exist a1, . . . , an ⇥ OK such that disc(a1, . . . , an) is squarefree, then

OK = Za1 ⇤ . . .⇤ Zan.



3.3 Absolute norm

Definition 3.3.1: The absolute norm of a non-zero ideal a � OK is the index

Nm(a) := [OK : a] ⇥ Z�1
.

Proposition 3.3.2: For any a ⇥ A� {0} we have Nm((a)) = |NmK/Q(a)|.



Proposition 3.3.3: For any integer N � 1 there exist only finitely many non-zero ideals a � OK with
Nm(a) ⇥ N .

Proposition 3.3.4: For any two non-zero ideals a, b � OK we have

Nm(ab) = Nm(a) · Nm(b).

Let JK denote the group of fractional ideals of OK .

Corollary 3.3.5: The absolute norm extends to a unique homomorphism

Nm: JK �! (Q>0
, ·).



3.4 Real and complex embeddings

Throughout the following we abbreviate ⇥ := HomQ(K,C) and set

r := the number of � ⇥ ⇥ with �(K) � R,
s := the number of � ⇥ ⇥ with �(K) ⌅� R, up to complex conjugation.

Proposition 3.4.1: We have r + 2s = n.

Proposition 3.4.2: We have ring isomorphisms

K ⇧Q C ⇥ //

⌃
KC :=

Q
�⇤� C,

⌃
K ⇧Q R ⇥ // KR :=

�
(z�)� ⇥ KC

⇥⇥ ⌥� ⇥ ⇥ : z�̄ = z̄�

⇤
.

x⇧ z
� // (�(x)z)�.

The map x 7! x⇧ 1 induces an embdding j : K ⇥! KR.



Proposition 3.4.3: For every fractional ideal a of OK the image j(a) is a complete lattice in KR.

To describe this with more explicit coordinates we let �1, . . . , �r be the real embeddings and �r+1, . . . , �n

the non-real embeddings such that �̄r+j = �̄r+j+s for all 1 ⇥ j ⇥ s.

Proposition 3.4.4: We have an isomorphism of R-vector spaces

KR
⇥

�! Rn
, (z�)� 7�!

⌅
z�1 , . . . , z�r ,Re z�r+1 , . . . ,Re z�r+s , Im z�r+1 , . . . , Im z�r+s

⇧
.



3.5 Quadratic number fields

Proposition 3.5.1: The quadratic number fields are precisely the splitting fields of the poiynomials X2�d
for all squarefree integers d ⇥ Z� {0, 1}.

Convention 3.5.2: For any positive integer d we let
 
d be the positive real square root of d. For any

negative integer d we uncanonically choose a square root
 
d in iR.



Proposition 3.5.2: For d as above and K = Q(
 
d) we have

OK =

⌃ Z[
 
d ] if d ⌦ 2, 3 mod (4),

Z[1+
⌅
d

2 ] if d ⌦ 1 mod (4)

and

dK =

⌃
4d if d ⌦ 2, 3 mod (4),
d if d ⌦ 1 mod (4)

Corollary 3.5.4: The integer d is uniquely determined by K, namely as the squarefree part of dK .

Remark 3.5.5: The possible discriminants of quadratic number fields are sometimes called fundamental

discriminants. As the discriminant is somewhat more canonically associated to K than the number d,
some authors prefer to write K = Q(

 
dK).


