3 Algebraic integers
3.1 Number fields

Definition 3.1.1: (a) A finite field extension K / \mathbb{Q} is called an (algebraic) number field.
(b) A number field of degree $2,3,4,5, \ldots$ is called quadratic, cubic, quartic, quintic, \ldots
(c) The integral closure \mathcal{O}_{K} bf \mathbb{Z} in K is called the ring of algebraic integers in K.

In the rest of this chapter we fix such K and \mathcal{O}_{K} and abbreviate $n:=[K /\langle Q]$.
Proposition 3.1.2: (a) The ring \mathcal{O}_{K} is Dedekind. \qquad 1.9.J
(c) \mathcal{O}_{K} is a free \mathbb{Z}-module of rank n.
(b) Any fractional ideal \mathfrak{a} of \mathcal{O}_{K} is a free \mathbb{Z}-module of rank n.

$$
\exists a, b \in \sigma_{k}: \underbrace{a \sigma_{k}<\pi<\underbrace{}_{r} \underbrace{\frac{1}{b} \sigma_{k}}}_{\uparrow}
$$

free 7 -monas of min n.
3.2 Absolute discriminant

Proposition 3.2.1: (a) For any \mathbb{Z}-submodule $\Gamma \subset K$ of rank n with an ordered \mathbb{Z}-basis $\left(x_{1}, \ldots, x_{n}\right)$ the following value depends only on Γ :

$$
\underline{\operatorname{disc}(\Gamma)}:=\operatorname{disc}\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z} \backslash\{0\} .
$$

(b) For any two \mathbb{Z}-submodules $\Gamma \subset \Gamma^{\prime} \subset K$ of rank n the index $\left[\Gamma^{\prime}: \Gamma\right]$ is finite and we have

$$
\operatorname{disc}(\Gamma)=\left[\Gamma^{\prime}: \Gamma\right]^{2} \cdot \operatorname{disc}\left(\Gamma^{\prime}\right) .
$$

Pouf: (a) $k_{1,-,}^{1} x_{i}^{\prime}$ and the bin $f r \Rightarrow x_{i}=\sum_{j} a_{i j} x_{j}^{\prime} ; M:=\left|a_{i j}\right|_{i, j}$ GLT (R)
$\Rightarrow \operatorname{lat}(n)= \pm 1$;

$$
\left[\alpha-\left[k_{i} x_{j}\right)\right\rangle_{i j}=M \cdot\left\langle\operatorname{mr}\left\langle k_{i}^{\prime} x_{j}^{\prime}\right)\right\rangle_{i, j} \cdot \Gamma^{\top}
$$

$\Rightarrow \sin <\left\langle x_{1}, \ldots, x_{n}\right|=\operatorname{det}\langle n\rangle^{2}$. dime $\left\langle x_{1}^{\prime},, k_{n}^{\prime}\right\rangle$.
(b) $\left.x_{1, \ldots}^{\prime}\right\rangle x_{n}^{\prime} \operatorname{banin} f r^{\prime} \Rightarrow \operatorname{sicc}\langle r\rangle=\operatorname{aic}\left(k_{7, \gamma} x_{1}\right)=\operatorname{mot}\langle n\rangle^{2} \cdot \operatorname{sirc}\left\langle r^{\prime}\right)$.

Eleunaty, din ion then: $\exists u, V \in\left\langle L_{n}\langle\mathbb{Z}) ; \Delta \cap V=\left(\begin{array}{cc}e_{1} & \Delta \\ \Delta & e_{n}\end{array}\right\rangle\right.$ wit $e_{i} E \mathbb{Z}$

$$
\Rightarrow \operatorname{det}(\Lambda)= \pm \prod_{i=1}^{n} e_{i}= \pm\left[r^{\prime}: r\right] . \quad \Rightarrow r^{\prime} / r \equiv 2^{n} / n \mathbb{Z}^{n} \equiv \oplus \mathbb{Z} / e_{i} \mathbb{Z}
$$

Definition 3.2.2: The number

$$
d_{K}:=\operatorname{disc}\left(\mathcal{O}_{K}\right) \in \mathbb{Z} \backslash\{0\}
$$

is called the discriminant of \mathcal{O}_{K} or of K.
Corollary 3.2.3: If there exist $a_{1}, \ldots, a_{n} \in \mathcal{O}_{K}$ such that $\operatorname{disc}\left(a_{1}, \ldots, a_{n}\right)$ is squarefree, then

$$
\mathcal{O}_{K}=\mathbb{Z} a_{1} \oplus \ldots \oplus \mathbb{Z} a_{n}
$$

Pouf: Let $r:=\mathbb{Z} a_{1} \oplus \cdots \oplus \mathbb{Z}_{a_{n}}$

$$
\Rightarrow \underbrace{\text { give }\langle r|}_{\text {squarer } \Rightarrow}=\underbrace{\left[\sigma_{k}: r\right]^{2}}_{\frac{u}{n}} \cdot \operatorname{sice}\left\langle\Delta_{k}\right|,
$$

qed.
3.3 Absolute norm

Definition 3.3.1: The absolute norm of a non-zero ideal $\mathfrak{a} \subset \mathcal{O}_{K}$ is the index

$$
\operatorname{Nm}(\mathfrak{a}):=\left[\mathcal{O}_{K}: \mathfrak{a}\right] \in \mathbb{Z}^{\geqslant 1}
$$

Proposition 3.3.2: For any $a \in \backslash\{0\}$ we have $\operatorname{Nm}((a))=\left|\operatorname{Nm}_{K / \mathbb{Q}}(a)\right|$.
Poof: Lat $T_{a}: K \rightarrow K$, $x \mapsto a x$
Tare an andud bin B f bk ave \mathbb{L}
Mat $, x,\langle\mathbb{Z} 1$
$\Rightarrow N_{n k /<c}(a)=\operatorname{dot}\left(T_{a}\right)=\operatorname{sut}(\Pi)$ for $\left.n:=B_{B}^{\left[e_{a}\right.}\right]_{B}$.

$$
\begin{aligned}
\Rightarrow\left|N_{m k} / \Delta Q^{(a)}\right|=|\operatorname{det}(n)|=e_{1} \cdots e_{n} & =\left[\mathbb{Z}^{n}: \operatorname{unv} \cdot \mathbb{Z}^{n}\right] \quad e_{i}>0 . \\
& =\left[\nabla_{k}: T_{a}\left|\sigma_{k}\right|\right]=\left[\theta_{k}:\langle a|\right] .
\end{aligned}
$$

qed.

Proposition 3.3.3: For any integer $N \geqslant 1$ there exist only finitely many non-zero ideals $\mathfrak{a} \subset \mathcal{O}_{K}$ with $\mathrm{Nm}(\mathfrak{a}) \leqslant N$.
Pug: $z_{f}\left[G_{k} ; W_{0}\right] \leq N \Rightarrow N!\cdot \Delta_{k}<N<\sigma_{k}$.
win Go /N! Δ_{k} hi σ_{k}.
qed.

Proposition 3.3.4: For any two non-zero ideals $\mathfrak{a}, \mathfrak{b} \subset \mathcal{O}_{K}$ we have

$$
\begin{aligned}
& \operatorname{Nm}(\mathfrak{a b})=\operatorname{Nm}(\mathfrak{a}) \cdot \operatorname{Nm}(\mathfrak{b}) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { yea. }
\end{aligned}
$$

Let J_{K} denote the group of fractional ideals of \mathcal{O}_{K}.
Corollary 3.3.5: The absolute norm extends to a unique homomorphism

$$
\mathrm{Nm}: J_{K} \longrightarrow\left(\mathbb{Q}^{>0}, \cdot\right)
$$

 Lit $N_{m}\langle a|:=\frac{N m\langle b \cdot a\rangle)}{N_{m}(\langle b|)}$. Thin if leyunde of by by 3.3 .4
 $\Rightarrow N_{m}\langle b \Delta r) \cdot N_{2}\left\langle\left(l_{c}\right)\right\rangle=\operatorname{Nan}\left\langle b(a r\rangle=N_{m}\left\langle\langle a\rangle \cdot N_{m}\langle(b)\rangle\right.\right.$.
3.4 Real and complex embeddings

Throughout the following we abbreviate $\Sigma:=\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$ and set

$$
r:=\text { the number of } \sigma \in \Sigma \text { with } \sigma(K) \subset \mathbb{R},
$$

$$
\bar{s}:=\text { the number of } \sigma \in \Sigma \text { with } \overline{\sigma(K) \not \subset \mathbb{R}}, \text { up to complex conjugation. }
$$

Proposition 3.4.1: We have $r+2 s=n$.
Prof: $n=[k / Q]=\left|\sum\right|$ become $K / L Q ;$ hike epmale.
Proposition 3.4.2: We have ring isomorphisms

$$
\begin{aligned}
& \frac{K \otimes_{\mathbb{Q}} \mathbb{C}}{U} \xrightarrow{\langle *\rangle_{\sim}} K_{\mathbb{C}}:=\prod_{\sigma \in \Sigma} \mathbb{C}, \\
& K \\
& K \otimes_{\mathbb{Q}} \mathbb{R}
\end{aligned}
$$

$$
\underline{\overline{x \otimes z \longmapsto}} \longrightarrow(\sigma(x) z)_{\sigma \in \Sigma}
$$

The map $x \mapsto x \otimes 1$ induces an embdding $j: K \hookrightarrow K_{\mathbb{R}}$.

K k; \mathbb{Q}-hines, in ho ct \mathbb{K}-bier seam te i is \mathbb{T}-bier in z.

Next: if $z \in \mathbb{R}$, th $\bar{\sigma}(x) \cdot z=\overline{\sigma(x) \cdot z} ;<0\langle *\rfloor \mathrm{mon} K \mathbb{Q} \mathbb{R}$ int $K_{\mathbb{R}}$.

$$
\Rightarrow\lfloor * * \mid \text { is } \sim \text { ismoris. }
$$

Proposition 3.4.3: For every fractional ideal \mathfrak{a} of \mathcal{O}_{K} the image $j(\mathfrak{a})$ is a complete lattice in $K_{\mathbb{R}}$.

$$
\begin{aligned}
& \sigma_{1} ;-\sigma_{r}, \sigma_{n+1 /,}, \sigma_{n+5}, \overline{\sigma_{r+1,7}} \overline{\sigma_{n+5}}
\end{aligned}
$$

To describe this with more explicit coordinates we let $\sigma_{1}, \ldots, \sigma_{r}$ be the real embeddings and $\sigma_{r+1}, \ldots, \sigma_{n}$ the non-real embeddings such that $\bar{\sigma}_{r+j}=\bar{\sigma}_{r+j+s}$ for all $1 \leqslant j \leqslant s$.

Proposition 3.4.4: We have an isomorphism of \mathbb{R}-vector spaces
3.5 Quadratic number fields

Proposition 3.5.1: The quadratic number fields are precisely the splitting fields of the poiynomials $X^{2}-d$ for all squarefree integers $d \in \mathbb{Z} \backslash\{0,1\}$.
Pouf: $[K / L a]=2 \Rightarrow$ Thane $\xi \in K \backslash \mathbb{Q} \Rightarrow J^{2}+a J+b=0$ with $\rightarrow d \in \mathbb{G}$.

$$
\begin{aligned}
& \left.\left.\Rightarrow\left[\xi+\frac{a}{2}\right\}^{2}=\frac{a^{2}}{\xi}-b \text {. Ruche }\right\} \text { by }\right\}+\frac{a}{2} \Rightarrow \zeta^{2}=\frac{d}{c} e^{2} \text { hel, }, d \in \mathbb{C} \backslash\{D] \\
& \rightarrow\left\langle\frac{c\}}{e}\right\rangle^{2}=\left\langle d \in \mathbb{Z} \backslash[0) \text {. Neque } \xi 1_{3} \frac{c\}}{e} \Rightarrow \xi^{2}=d \in \mathbb{Z} \backslash\{0,1\}\right. \text { squerebure. }
\end{aligned}
$$

Frills: $\left(Q\langle\sqrt{\alpha}) \geqslant \sqrt{d^{\prime}} \Leftrightarrow \frac{d^{\prime}}{d} \in\left(a^{x}\right)^{2} \Leftrightarrow d=d^{\prime}\right.$ if d, d^{\prime} verimater.

Convention 3.5.2: For any positive integer d we let \sqrt{d} be the positive real square root of d. For any negative integer d we uncanonically choose a square root \sqrt{d} in $i \mathbb{R}$.

Proposition 3.5.2: For d as above and $K=\mathbb{Q}(\sqrt{d})$ we have
and

$$
\mathcal{O}_{K}=\left\{\begin{array}{ll}
\frac{\mathbb{Z}[\sqrt{d}]}{\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]} & \text { if } d \equiv 2,3 \bmod (4)
\end{array}, \int d \equiv \Delta(4) \text { does whet }(4),\right.
$$

$$
d_{K}=\left\{\frac{4 d \quad \text { if } d \equiv 2,3 \bmod (4)}{d \quad \text { if } d \equiv 1 \bmod (4)},\right.
$$

Prof: \sqrt{d} intent ins \mathbb{Z} is tho $f x^{2}-d \in \mathbb{Z}[k]$. Io $\mathbb{Z}[\sqrt{x}]<\mathbb{L}^{6} k$ i disc $[\mathbb{T}[\sqrt{d}])=$ disc $(1, \sqrt{d})=\left(\right.$ dirmimit of $\left.x^{2}-d\right]=\langle\sqrt{d}-(-\sqrt{d})\rangle^{2}=(2 \sqrt{d})^{2}=4 d$.

 Than nice $\left(\frac{1+\sqrt{d}}{2}\right)=\frac{1+\sqrt{d}}{2}+\frac{1-\sqrt{d}}{2}=1 \leqslant \mathbb{T} \Rightarrow \frac{1+\sqrt{d d}}{2}$ 的 $-\omega d f x^{2}-x+\frac{1-d}{4}$.
Corollary 3.5.4: The integer d is uniquely determined by K, namely as the squarefree part of d_{K}.
Remark 3.5.5: The possible discriminants of quadratic number fields are sometimes called fundamental discriminants. As the discriminant is somewhat more canonically associated to K than the number d, some authors prefer to write $K=\mathbb{Q}\left(\sqrt{d_{K}}\right)$.

