3 Algebraic integers

3.1 Number fields

Definition 3.1.1: (a) A finite field extension K/\mathbb{Q} is called an *(algebraic) number field.*

(b) A number field of degree 2, 3, 4, 5,... is called *quadratic, cubic, quartic, quintic,*...

(c) The integral closure \mathcal{O}_K of \mathbb{Z} in K is called the ring of *algebraic integers in* K.

In the rest of this chapter we fix such K and \mathcal{O}_K and abbreviate $n := [M]_{\mathcal{O}_K}$. $[\kappa/g]_{\mathcal{O}_K}$.

Proposition 3.1.2: (a) The ring \mathcal{O}_K is Dedekind.

(c) \mathcal{O}_K is a free \mathbb{Z} -module of rank n.

 \uparrow

(b) Any fractional ideal \mathfrak{a} of \mathcal{O}_{K} is a free \mathbb{Z} -module of rank n.

3.2 Absolute discriminant

Proposition 3.2.1: (a) For any \mathbb{Z} -submodule $\Gamma \subset K$ of rank *n* with an ordered \mathbb{Z} -basis (x_1, \ldots, x_n) the following value depends only on Γ :

$$\operatorname{disc}(\Gamma) := \operatorname{disc}(x_1, \ldots, x_n) \in \mathbb{Z} \setminus \{0\}.$$

(b) For any two \mathbb{Z} -submodules $\Gamma \subset \Gamma' \subset K$ of rank *n* the index $[\Gamma' : \Gamma]$ is finite and we have

 $\operatorname{disc}(\Gamma) = [\Gamma' : \Gamma]^2 \cdot \operatorname{disc}(\Gamma').$ $\underline{P}_{my}:(a) \quad \underline{K}_{n,-\gamma}^{l} \underline{K}_{k}^{l} \quad and \underline{K}_{k} \quad basis \quad f \quad \forall \quad \forall \quad \mathbf{X}_{l} = \sum_{j} a_{ij} \underbrace{K}_{j}^{l}; \quad \Pi := [a_{ij}]_{i,j}$ = u+(n)=±1; $\left(\begin{array}{c} \left(\begin{array}{c} k \left[\kappa_{i} \times_{j} \right] \right)_{ij} = \Pi \cdot \left(\begin{array}{c} \left(\kappa_{i} \times_{j}^{\prime} \right) \right)_{ij} \cdot \Pi^{T} \\ = 0 \quad \text{dis} \left(\left(\kappa_{i} \times_{j} \right) \times_{i} \right) = \quad \text{det} \left(\Pi \right)^{2} \cdot \left(\text{disc} \left(\left(\kappa_{i} \times_{j} \times_{i} \right) - \kappa_{i} \times_{i} \right) \right) \\ \left(\begin{array}{c} b \end{array} \right) \quad \times_{i}^{\prime} \cdot \cdots \cdot \times_{i}^{\prime} \quad \text{bmin} \notin T \quad \Rightarrow \quad \text{disc} \left(\left(\Gamma \right) = \operatorname{disc} \left(\kappa_{i} \times_{i} \times_{i} \right) = \operatorname{det} \left(\Pi \right)^{2} \cdot \operatorname{disc} \left(T \right) \right) .$ Elementy diason the : JUVE (al, (2); LINV = (21. 2) with ELER = $d_{4}(n) = \pm TTe_{i} = \pm [\Gamma', \Gamma]$ = $\Gamma'/\Gamma = \frac{2}{n2} = \oplus \frac{2}{e.2}$

Definition 3.2.2: The number

$$d_K := \operatorname{disc}(\mathcal{O}_K) \in \mathbb{Z} \setminus \{0\}$$

is called the *discriminant of* \mathcal{O}_K or of K.

Corollary 3.2.3: If there exist $a_1, \ldots, a_n \in \mathcal{O}_K$ such that $\underline{\operatorname{disc}(a_1, \ldots, a_n)}$ is squarefree, then

 $\mathcal{O}_K = \mathbb{Z}a_1 \oplus \ldots \oplus \mathbb{Z}a_n.$

$$\frac{\Gamma_{inf}}{\Im} : Lit \Gamma := \mathbb{Z} a_1 \oplus \ldots \oplus \mathbb{Z} a_n$$

$$= \frac{\operatorname{dire}(\Gamma)}{\operatorname{dire}(\Gamma)} = \left[\Im_{k} : \Gamma \right]^2 \cdot \operatorname{dire}(\Im_{k}),$$

$$\operatorname{Synaplice} = \frac{\pi}{1}.$$

3.3 Absolute norm

Definition 3.3.1: The *absolute norm* of a non-zero ideal $\mathfrak{a} \subset \mathcal{O}_K$ is the index

Proposition 3.3.3: For any integer $N \ge 1$ there exist only finitely many non-zero ideals $\mathfrak{a} \subset \mathcal{O}_K$ with $\operatorname{Nm}(\mathfrak{a}) \le N$.

Proposition 3.3.4: For any two non-zero ideals $\mathfrak{a}, \mathfrak{b} \subset \mathcal{O}_K$ we have

$$\begin{split} & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \operatorname{Nm}(\mathfrak{a}) \cdot \operatorname{Nm}(\mathfrak{b})}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{bb}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right] = \left[\mathcal{O}_{k} : \mathfrak{m} \right] \cdot \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right] = \left[\mathcal{O}_{k} : \mathfrak{mb} \right] = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right] = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{ab}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{mb}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{mb}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{mb}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak{mb}) = \left[\mathcal{O}_{k} : \mathfrak{mb} \right]}_{\Gamma_{\operatorname{s}}} \\ & \underbrace{\operatorname{Nm}(\mathfrak$$

Corollary 3.3.5: The absolute norm extends to a unique homomorphism

$$\frac{\operatorname{Nm}: J_K \longrightarrow (\mathbb{Q}^{>0}, \cdot)}{\operatorname{Lef}: \operatorname{Ter} \operatorname{sym} \operatorname{Lef} = \operatorname{Lef} \operatorname{Lef} \operatorname{Lef} = \operatorname{Lef} \operatorname{Lef} \operatorname{Lef} = \operatorname{Lef} \operatorname{Lef} \operatorname{Lef} \operatorname{Lef} = \operatorname{Lef} \operatorname{Lef} \operatorname{Lef} \operatorname{Lef} \operatorname{Lef} = \operatorname{Lef} \operatorname{Lef} \operatorname{Lef} \operatorname{Lef} \operatorname{Lef} \operatorname{Lef} \operatorname{Lef} = \operatorname{Lef} \operatorname{Lef$$

Real and complex embeddings 3.4

Throughout the following we abbreviate $\Sigma := \operatorname{Hom}_{\mathbb{O}}(K, \mathbb{C})$ and set

have $|\Sigma| = v + 2s$. r := the number of $\sigma \in \Sigma$ with $\sigma(K) \subset \mathbb{R}$, s := the number of $\sigma \in \Sigma$ with $\sigma(K) \not\subset \mathbb{R}$, up to complex conjugation.

The group Ant (C/IR) ach an E. In r=#fixed mis

and s= # whits of legth Z.

Proposition 3.4.1: We have r + 2s = n.

l'inf: n=[K/Q] = [] Jean K/Q ; hite aprelo

Proposition 3.4.2: We have ring isomorphisms

$$\underbrace{K \otimes_{\mathbb{Q}} \mathbb{C}}_{K \otimes_{\mathbb{Q}} \mathbb{R}} \xrightarrow{(*)_{\sim}} K_{\mathbb{C}} := \prod_{\sigma \in \Sigma} \mathbb{C}, \quad = \mathbb{C}^{2}$$

$$K \otimes_{\mathbb{Q}} \mathbb{R} \xrightarrow{(*)_{\sim}} K_{\mathbb{R}} := \{(z_{\sigma})_{\sigma} \in K_{\mathbb{C}} \mid \forall \sigma \in \Sigma : z_{\bar{\sigma}} = \bar{z}_{\sigma}\}$$

$$\underbrace{K \otimes_{\mathbb{Q}} \mathbb{R}}_{K \otimes z} \xrightarrow{(\sigma(x)z)_{\sigma \in \mathbb{Z}}} (\sigma(x)z)_{\sigma \in \mathbb{Z}}$$

The map $x \mapsto x \otimes 1$ induces an embdding $j: K \hookrightarrow K_{\mathbb{R}}$.

I'mf: K×C - KC, (×, +) + s (s[x]. +) s & i & -bilier = yidds (x) (x) i & -hins, is fact & -lier second the is & -lier is Z. The GEE' we & - hindy integrated = (*) is a isomorphism. Next: if z ElR, the E(x). Z = E(x). Z; co (*) man KO IR into KIR. Next: if z ElR, the E(x). Z = E(x). Z; co (*) man KO IR into KIR. (*) is is je there ; KIR = Elevent IR × Elevente to the dim IR (K) = +2r = bit to (k)

= [x x] is an isompline.

Proposition 3.4.3: For every fractional ideal \mathfrak{a} of \mathcal{O}_K the image $j(\mathfrak{a})$ is a complete lattice in $K_{\mathbb{R}}$.

To describe this with more explicit coordinates we let $\sigma_1, \ldots, \sigma_r$ be the real embeddings and $\sigma_{r+1}, \ldots, \sigma_n$ the non-real embeddings such that $\bar{\sigma}_{r+j} = \sigma_{r+j+s}$ for all $1 \leq j \leq s$.

Proposition 3.4.4: We have an isomorphism of \mathbb{R} -vector spaces

$$K_{\mathbb{R}} \xrightarrow{\sim} \mathbb{R}^{n} (z_{\sigma})_{\sigma} \longmapsto \left(\underline{z_{\sigma_{1}}, \ldots, z_{\sigma_{r}}}, \operatorname{Re} z_{\sigma_{r+1}}, \ldots, \operatorname{Re} z_{\sigma_{r+s}}, \operatorname{Im} z_{\sigma_{r+1}}, \ldots, \operatorname{Im} z_{\sigma_{r+s}} \right)$$

3.5 Quadratic number fields

Proposition 3.5.1: The quadratic number fields are precisely the splitting fields of the polynomials $X^2 - d$ for all squarefree integers $d \in \mathbb{Z} \setminus \{0,1\}$. and this d is might theme by K. $\boxed{\operatorname{Imf}} : \left[K/(d) \right] = 2 \Rightarrow \operatorname{Tde} \ J \in K \setminus \mathbb{Q} \Rightarrow J^2 + a \ J + b = 0 \qquad \text{iff} - b \in \mathbb{Q}$. $\Rightarrow \left[J + \frac{a}{2} \right]^2 = \frac{a^2}{5} - b \qquad \operatorname{Ruples} \ J \text{ by } \ J + \frac{a}{2} \Rightarrow \ J^2 = \frac{d}{c} e^2 \qquad b e_{c} \ d \in \mathbb{Q} \setminus \{0\}$ $\Rightarrow \left[J + \frac{a}{2} \right]^2 = \frac{a^2}{5} - b \qquad \operatorname{Ruples} \ J \text{ by } \ J + \frac{a}{2} \Rightarrow \ J^2 = d \in \mathbb{Q} \setminus \{0,1\} \qquad \text{some he} \ .$ $\Rightarrow \left(\frac{c \ J}{e} \right)^2 = c \ d \in \mathbb{Q} \setminus \{0,1\} \qquad \operatorname{Ruples} \ J \text{ by } \ J + \frac{a}{2} \Rightarrow \ J^2 = d \in \mathbb{Q} \setminus \{0,1\} \qquad \operatorname{some he} \ .$ $= \left(\frac{c \ J}{e} \right)^2 = c \ d \in \mathbb{Q} \setminus \{0,1\} \qquad \operatorname{Ruples} \ J \text{ by } \ J + \frac{a}{2} \Rightarrow \ J^2 = d \in \mathbb{Q} \setminus \{0,1\} \qquad \operatorname{some he} \ .$ $= \left(\frac{c \ J}{e} \right)^2 = c \ d \in \mathbb{Q} \setminus \{0,1\} \qquad \operatorname{some he} \ .$ $= \left(\frac{a (\sqrt{a})}{a} \right)^2 = c \ d \in \mathbb{Q} \setminus \{0,1\} \qquad \operatorname{some he} \ .$ $= \left(\frac{a (\sqrt{a})}{a} \right)^2 = 2 \qquad .$ $= \left(\frac{a (\sqrt{a})}{a} \right)^2 = \left(\frac{d}{a} \right)^2 = \left(\frac{d}{a} \right)^2 = 2 \qquad .$ $= \left(\frac{a (\sqrt{a})}{a} \right)^2 = \left(\frac{d}{a} \right)^2 = \left(\frac{d}{a} \right)^2 = \left(\frac{d}{a} \right)^2 = \frac{d}{a} = \frac{d}{a} \right)^2 = \frac{d}{a} = \frac{$

Convention 3.5.2: For any positive integer d we let \sqrt{d} be the positive real square root of d. For any negative integer d we uncanonically *choose* a square root \sqrt{d} in $i\mathbb{R}$.

Proposition 3.5.2: For *d* as above and $K = \mathbb{Q}(\sqrt{d})$ we have

.

and

$$d_{K} = \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \mod (4) \end{array} \right\}$$

$$\int \mathcal{L}_{K} \left\{ \begin{array}{c} \overline{d} & \operatorname{if} d \equiv 1 \operatorname{if}$$

Corollary 3.5.4: The integer d is uniquely determined by K, namely as the squarefree part of d_K .

Remark 3.5.5: The possible discriminants of quadratic number fields are sometimes called *fundamental discriminants.* As the discriminant is somewhat more canonically associated to K than the number d, some authors prefer to write $K = \mathbb{Q}(\sqrt{d_K})$.