Reminder:

The quadratic number fields are precisely the fields $K=\mathbb{Q}(\sqrt{d})$ for all squarefree integers $d \in \mathbb{Z} \backslash\{0,1\}$, and

$$
\mathcal{O}_{K}=\left\{\begin{array}{cl|}
\mathbb{Z}[\sqrt{d}] & \text { if } d \equiv 2,3 \bmod (4) \\
\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] & \text { if } d \equiv 1 \bmod (4) \\
\hline
\end{array}\right.
$$

Definition 3.5.6: We have the following cases:
(a) If $d>0$, there exist precisely two distinct embeddings $\sigma_{1}, \sigma_{2}: K \hookrightarrow \mathbb{R}$ and we call K real quadratic. In this case we obtain a natural embedding

$$
\left(\sigma_{1}, \sigma_{2}\right): K \longleftrightarrow \mathbb{R}^{2}
$$

(b) If $d<0$, there exist precisely two distinct embeddings $\sigma, \bar{\sigma}: K \hookrightarrow \mathbb{C}$ that are conjugate under complex conjugation, and we call K imaginary quadratic. In this case we obtain a natural embedding

$$
\sigma: K \hookrightarrow \mathbb{C}
$$

3.6 Cyclotomic fields
J is int inge mo r \mathbb{R}.
Fix an integer $n \geqslant 2$
Definition 3.6.1: (a) An element $\zeta \in \mathbb{C}$ with $\zeta^{n}=1$ is called an n-th root of unity.
(b) An element $\zeta \in \mathbb{C}^{\times}$of precise order n is called a primitive n-th root of unity.

Proposition 3.6.2: The n-th roots of unity form a cyclic subgroup $\mu_{n} \subset \mathbb{C}^{\times}$, which is generated by any primitive n-th root of unity, for instance by $e^{\frac{2 \pi i}{n}}$.

$$
\begin{aligned}
& K / l a \text { is jabs linin. } \\
& =\text { spams biel of } x-1 .
\end{aligned}
$$

For the following we fix a primitive n-th root of unity ζ and set $K:=\mathbb{Q}\left(\mu_{n}\right)=\mathbb{Q}(\zeta)$.
Proposition 3.6.3: (a) An integral power ζ^{a} has order n if and only if $\underline{\operatorname{gcd}(a, n)=1}$.
(b) For any such a we have $\frac{1-\zeta^{a}}{1-\zeta} \in \mathcal{O}_{K}^{\times}$.

Prof: $I \neq 1 \Rightarrow$ well elepid.

Definition 3.6.4: The n-th cyclotomic polynomial Φ_{n} is the monic polynomial of degree $\varphi(n):=$ $\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|$with the simple roots μ_{n}.

Theorem 3.6.5: The polynomial Φ_{n} is an irreducible element of $\mathbb{Z}[X]$.

$$
\Phi_{n}(x)=\prod_{s \in \mu_{n} \text { rivine. }}(x-\xi)
$$

Prof: 覀 diven $x^{n}-1 \in \mathbb{Z}[x]$, monis.
$\forall s \in$ Kal $(k / l a): \forall \xi \in M_{n}$ minizim : $5(\xi)$ midiz.

$$
\vec{E}_{n} \in \mathbb{B}[k]
$$

$$
\Rightarrow \sigma_{\Phi_{n}}=\Psi_{n} \Rightarrow \Phi_{n} \leqslant \ll[x]
$$

Let $f \in \mathbb{Q}[X]$ be the mini-l properad of $]$ an $\mathbb{\Delta}$. Slity: Une $x^{n}-1=\prod_{m / n} \Phi_{m}(x)$. $\Rightarrow f \in \mathbb{Z}[x]$. nd $f \mid x^{n}-1$.
Clain 1: For ens pine ptn: $f\left(y^{p}\right)=0$.
Panf: If not, lat $g \in \mathbb{Z}[x]$ do the nim.pl. $f y^{p}$ aro \mathbb{Q}. Then $f \cdot g \mid x^{n}-1$.
Uik $x^{n}-1=f g h$ wile $h \in \mathbb{Z}[x]$.
$g\left\langle y^{p}\right\rangle=\Delta \Rightarrow y ; \operatorname{avolf} g\left(x^{p}\right\rangle \Rightarrow f \mid g\left(x^{p}\right)$. Wim. $g\left(x^{\mu}\right)=f \cdot k$ for $k \in \mathbb{Z}[x]$. raduce $m \perp(p) \leadsto \bar{f}, \bar{g}, \bar{h}, \bar{k} \in \mathbb{F}_{p}[x]$
$\Rightarrow \bar{g}^{p}(X)=\bar{g}\left(X^{p}\right)=\bar{f} \cdot \bar{\varepsilon} \Rightarrow \bar{f}$ and \bar{g} him_comen tansi- $\overline{\mathbb{F}_{0}}$.

Chain 2: $\forall a \in \mathbb{Z}$ comines n: $f\left(y^{a}\right)=0$
Pimp: WOK; a>0 win $a=p_{1} \ldots p_{r}$ with pines $p_{i}+n$. topers can 1 do earl p_{i} and $J^{p_{1} \cdots p_{i n}}$ \& l_{0} inchoate! and.

zed.

Theorem 3.6.6: The extension K / \mathbb{Q} is finite galois of degree $\varphi(n)$ and there is a natural isomorphism $e: \operatorname{Gal}(K / \mathbb{Q}) \xrightarrow{\sim}(\mathbb{Z} / n \mathbb{Z})^{\times}$with the property

$$
\begin{aligned}
& \text { Koa }
\end{aligned}
$$

Theorem 3.6.7: If $n=\ell^{\nu}$ for a prime ℓ and an integer $\nu \geqslant 1$, then:
(a) We have $\Phi_{\ell^{\nu}}(X)=\sum_{i=0}^{\ell-1} X^{i \ell^{\nu-1}}$.
(b) The ideal $(1-\zeta)$ of \mathcal{O}_{K} satisfies $(1-\zeta)^{\ell^{\nu-1}(\ell-1)}=(\ell)$.
(c) The ideal $(1-\zeta)$ is the unique prime ideal of \mathcal{O}_{K} above $(\ell) \subset \mathbb{Z}$ and has residue field $\mathcal{O}_{K} /(1-\zeta) \cong \mathbb{F}_{\ell}$.
(d) $\mathcal{O}_{K}=\mathbb{Z}[\zeta] \cong \mathbb{Z}[X] /\left(\Phi_{\ell^{\nu}}\right)$.
(e) $\operatorname{disc}\left(\mathcal{O}_{K}\right)= \pm \ell^{\ell-1}(\nu \ell-\nu-1)$.

