Reminder:

The quadratic number fields are precisely the fields $K = \mathbb{Q}(\sqrt{d})$ for all squarefree integers $d \in \mathbb{Z} \setminus \{0, 1\}$, and

K/12 is galin with grap [7,5] to 5/Vd/=-Vd

$$\mathcal{O}_K = \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \equiv 2,3 \mod (4), \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & \text{if } d \equiv 1 \mod (4) \end{cases}$$

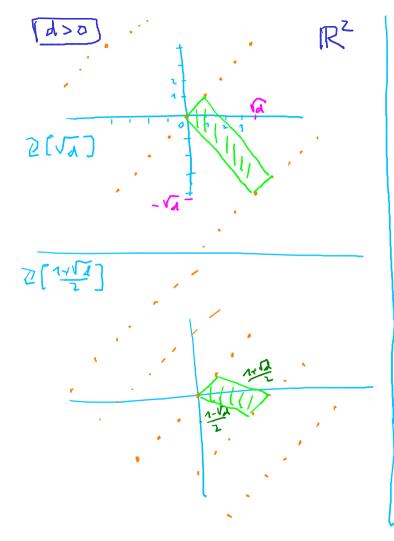
Definition 3.5.6: We have the following cases:

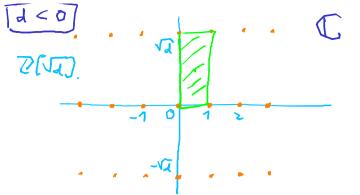
(a) If d > 0, there exist precisely two distinct embeddings $\sigma_1, \sigma_2 \colon K \hookrightarrow \mathbb{R}$ and we call K real quadratic. In this case we obtain a natural embedding

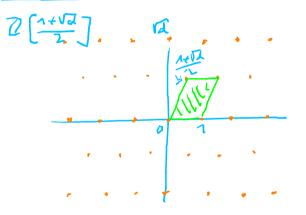
$$(\sigma_1, \sigma_2) \colon K \longrightarrow \mathbb{R}^2.$$

(b) If d < 0, there exist precisely two distinct embeddings $\sigma, \overline{\sigma} \colon K \hookrightarrow \mathbb{C}$ that are conjugate under complex conjugation, and we call K imaginary quadratic. In this case we obtain a natural embedding

$$\sigma\colon K \longrightarrow \mathbb{C}.$$







Fix an integer $n \ge \not \ge 2$

Definition 3.6.1: (a) An element $\zeta \in \mathbb{C}$ with $\zeta^n = 1$ is called an *n-th root of unity*.

(b) An element $\zeta \in \mathbb{C}^{\times}$ of precise order *n* is called a *primitive n-th root of unity*.

Proposition 3.6.2: The *n*-th roots of unity form a cyclic subgroup $\mu_n \subset \mathbb{C}^{\times}$, which is generated by any primitive *n*-th root of unity, for instance by $e^{\frac{2\pi i}{n}}$.

J is integral nor Z

K/Q is galon finite = splits; Cill of X-1.

For the following we fix a primitive *n*-th root of unity ζ and set $K := \mathbb{Q}(\mu_n) = \mathbb{Q}(\zeta)$.

Proposition 3.6.3: (a) An integral power ζ^a has order *n* if and only if gcd(a, n) = 1.

(b) For any such a we have $\frac{1-\zeta^a}{1-\zeta} \in \mathcal{O}_K^{\times}$.

Definition 3.6.4: The *n-th cyclotomic polynomial*
$$\Phi_n$$
 is the monic polynomial of degree $\varphi(n) := |(\mathbb{Z}/n\mathbb{Z})^{\times}|$ with the simple roots μ_n .
Theorem 3.6.5: The polynomial Φ_n is an irreducible element of $\mathbb{Z}[X]$.
 $f = [\mathbb{Z}/n\mathbb{Z}] \times \mathbb{P}$ \mathbb{P} \mathbb{P}

Clair 2: Vac 2 copieton : f(Ya)=0 I'mp: ULOG; a > O Wink a = p, - pr ik pines p; f. n. Apply chin 1 to call pi and J^{Pi-Pin} & to induct. End By Clair 2 we have $\overline{\Phi}_n | f | \overline{\Phi}_n \Rightarrow f = \overline{\Phi}_n$ ged

Theorem 3.6.6: The extension K/\mathbb{Q} is finite galois of degree $\varphi(n)$ and there is a natural isomorphism $e: \operatorname{Gal}(K/\mathbb{Q}) \xrightarrow{\sim} (\mathbb{Z}/n\mathbb{Z})^{\times}$ with the property

$$\forall \gamma \in \operatorname{Gal}(K^{e(\gamma)}): \ \gamma(\zeta) = \zeta^{e(\gamma)}.$$

Theorem 3.6.7: If $n = \ell^{\nu}$ for a prime ℓ and an integer $\nu \ge 1$, then:

- (a) We have $\Phi_{\ell^{\nu}}(X) = \sum_{i=0}^{\ell-1} X^{i\ell^{\nu-1}}$.
- (b) The ideal $(1-\zeta)$ of \mathcal{O}_K satisfies $(1-\zeta)^{\ell^{\nu-1}(\ell-1)} = (\ell)$.
- (c) The ideal $(1-\zeta)$ is the unique prime ideal of \mathcal{O}_K above $(\ell) \subset \mathbb{Z}$ and has residue field $\mathcal{O}_K/(1-\zeta) \cong \mathbb{F}_\ell$.
- (d) $\mathcal{O}_K = \mathbb{Z}[\zeta] \cong \mathbb{Z}[X]/(\Phi_{\ell^{\nu}}).$
- (e) disc(\mathcal{O}_K) = $\pm \ell^{\ell^{\nu-1}(\nu\ell-\nu-1)}$.