Correction:

[K/Q]=n

Proposition 3.2.1: (a) For any Z-submodule $\Gamma \subset K$ of rank *n* with an ordered Z-basis (x_1, \ldots, x_n) the following value depends only on Γ :

 $\operatorname{disc}(\Gamma) := \operatorname{disc}(x_1, \ldots, x_n) \in \mathbb{Q}^{\times}.$

(c) For any \mathbb{Z} -submodule $\Gamma \subset \mathcal{O}_K$ of rank *n* we have disc $(\Gamma) \in \mathbb{Z} \setminus \{0\}$.

Reminder:

Consider an integer $n \ge 1$, take a primitive *n*-th root of unity ζ and set $K := \mathbb{Q}(\mu_n) = \mathbb{Q}(\zeta)$. **Proposition 3.6.3:** If $n \ge 2$, then for any *a* coprime to *n* we have $\frac{1-\zeta^a}{1-\zeta} \in \mathcal{O}_K^{\times}$. (Cyclotomic units) **Definition 3.6.4:** The *n*-th cyclotomic polynomial Φ_n is the monic polynomial of degree $\varphi(n) := |(\mathbb{Z}/n\mathbb{Z})^{\times}|$ with the simple roots \mathbb{Z} by the prior is the mode f mide. **Theorem 3.6.5:** The polynomial Φ_n is an irreducible element of $\mathbb{Z}[X]$. **Theorem 3.6.6:** The extension K/\mathbb{Q} is finite galois of degree $\varphi(n)$ and there is a natural isomorphism $e: \operatorname{Gal}(K/\mathbb{Q}) \xrightarrow{\sim} (\mathbb{Z}/n\mathbb{Z})^{\times}$ with the property ζ_{γ} dotomic character. $\forall \gamma \in \operatorname{Gal}(K/\mathbb{Q}): \gamma(\zeta) = \zeta^{e(\gamma)}$. $\mathbb{Q}_{\gamma}(\chi = 1 \pm \chi + \ldots \pm \chi^{e(\gamma)})$

lell 1=[K/@]=p(~) **Theorem 3.6.7:** If $n = \ell^{\nu}$ for a prime ℓ and an integer $\nu \ge 1$, then: = (R-1) 20-1 (a) We have $\Phi_{\ell^{\nu}}(X) = \sum_{i=0}^{\ell-1} X^{i\ell^{\nu-1}}$. (b) The ideal $(1 - \zeta)$ of \mathcal{O}_K satisfies $(1 - \zeta)^{\ell^{\nu-1}(\ell-1)} = (\ell)$. (c) The ideal $(1-\zeta)$ is the unique prime ideal of \mathcal{O}_K above $(\ell) \subset \mathbb{Z}$ and has residue field $\mathcal{O}_K/(1-\zeta) \cong \mathbb{F}_\ell$. (d) $\mathcal{O}_K = \mathbb{Z}[\zeta] \cong \mathbb{Z}[X]/(\Phi_{\ell^{\nu}}).$ (e) disc(\mathcal{O}_K) = $\pm \ell^{\ell^{\nu-1}(\nu\ell-\nu-1)}$. $\int_{1}^{1} \frac{d}{dr} \frac{d}{dr} \frac{d}{dr} (X) = \frac{X^{2^{\nu}}}{X^{2^{\nu}}} = \sum_{i'=0}^{l-1} X^{i \cdot 2^{\nu-1}}$ (b) $\underline{\Phi}_{0\nu}(1) \stackrel{(4)}{=} \stackrel{k-1}{\sum} 1 = k$ $\prod^{n} (1-J^{a}) \in G_{k}^{\times} \cdot \prod (1-J) = b_{k}^{\times} \cdot (1-J)^{d}$ $\begin{array}{c} \alpha \in (\mathbb{R}/\mathbb{R}^2) \\ (c) \quad \mathbb{N}_{\mathrm{M}}\left(\left(\mathbb{R} \right) \right) \stackrel{\mathrm{lef}}{=} \left[\mathcal{O}_{\mathrm{K}} : \mathcal{O}_{\mathrm{K}} \mathbb{R} \right] = \mathbb{R}^{d} \quad \mathrm{lecons} \quad \mathcal{O}_{\mathrm{L}} \stackrel{\mathrm{de}}{=} \mathbb{R}^{d} \quad \mathrm{s} \; \mathbb{R} - \mathrm{module}. \end{array}$ $N_{m} \left((1-7)^{M} \right) = N_{m} \left((1-7) \right)^{d} = \left[(9_{X} : (1-7) \right]^{d}$

$$\begin{array}{c} (v) & \downarrow & (1-j^{n+1})^{(k-1)\cdot k^{n-1}} \in G_{k}^{\times} \cdot \xi \\ & \downarrow & \downarrow \\ h \in A^{n} \\ \hline h = (k-1)k^{n-1} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = \underbrace{Aicc \left(\underline{\mathbb{D}} n \right)}_{\leq \mathbb{C}} = (1 \cdot \underbrace{\mathbb{L}}^{N} \quad for non \quad N \ge 1 \quad n \in n \in \underline{\mathbb{D}}_{k}^{\times} \\ \hline & \underline{\mathbb{C}} \times [1 \circ] \\ \end{array} \\ \end{array} \\ \begin{array}{c} = \underbrace{Aicc \left(\underline{\mathbb{D}} n \right)}_{\leq \mathbb{C}} = (1 \cdot \underbrace{\mathbb{L}}^{N} \quad for non \quad N \ge 1 \quad n \in n \in \underline{\mathbb{D}}_{k}^{\times} \\ \hline & \underline{\mathbb{C}} \times [1 \circ] \\ \hline & \underline{\mathbb{C}} \times [1 \circ] \\ \end{array} \\ \end{array} \\ \begin{array}{c} = \underbrace{Aicc \left(\underline{\mathbb{D}} n \right)}_{\leq \mathbb{C}} = (1 \cdot \underbrace{\mathbb{C}}^{N} \\ \hline & \underline{\mathbb{C}} \times [1 \circ] \\ \hline & \underline{\mathbb{C}} \times [1 \to \mathbb{C} \times [1$$

Theorem 3.6.8: For arbitrary n we have:

(a) $\mathcal{O}_K = \mathbb{Z}[\zeta].$

(b) The discriminant $\operatorname{disc}(\mathcal{O}_K) \in \mathbb{Z}$ is divisible precisely by the primes dividing n.

Purp: n=1; J=1, by=2, hive R/=1. n=2" for & pine, 1>0; The. 3.6.7. h= m.m' for m, h'> 1 copie. I Chiese manile the: Pho ~ R/ma × R/m'Z. $= r_{n} \stackrel{=}{=} r_{m} \times r_{m'}$ $\rightarrow (2/n2)^{\times} \stackrel{\times}{=} (2/m2)^{\times} \times (2/m2)^{\times}$ $\frac{Q(r_{u})}{[2(u2)^{\times}]} (2(u2)^{\times}) (2($ To & (my) and & (Twi) we livered digit make and & (ru, rui) = @ (ru). - (~) & ()/

3.7 Quadratic Reciprocity

Fix an odd prime ℓ and set $K := \mathbb{Q}(\mu_{\ell})$ and $\zeta := e^{\frac{2\pi i}{\ell}}$.

Definition 3.7.1: The *Legendre symbol* of an integer a with respect to ℓ is

$$\left(\frac{a}{\ell}\right) := \begin{cases} \frac{0 & \text{if } a \equiv 0 \mod (\ell), \\ +1 & \text{if } a \equiv b^2 \mod (\ell) \text{ for some } b \in \mathbb{Z} \smallsetminus \ell\mathbb{Z}, \\ -1 & \text{otherwise.} \end{cases}$$

In the first two cases a is called a *quadratic residue*, otherwise a *quadratic non-residue modulo* (ℓ) .

Proposition 3.7.2: For any integers
$$a, b$$
 we have:
(a) $\left(\frac{a}{\ell}\right) = \left(\frac{b}{\ell}\right)$ whenever $a \equiv b \mod (\ell)$.
(b) $\left(\frac{a}{\ell}\right) \equiv a^{\frac{\ell-1}{2}} \mod (\ell)$.
(c) $\left(\frac{ab}{\ell}\right) = \left(\frac{a}{\ell}\right)\left(\frac{b}{\ell}\right)$.
(d) $\left(\frac{-1}{\ell}\right) = \left(-1\right)^{\frac{\ell-1}{2}}$.
(e) $\left(\frac{ab}{\ell}\right) = \left(\frac{a}{\ell}\right)\left(\frac{b}{\ell}\right)$.
(f) $\left(\frac{ab}{\ell}\right) = \left(\frac{a}{\ell}\right)^{\frac{\ell-1}{2}}$.
(g) $\left(\frac{ab}{\ell}\right) = \left(\frac{ab}{\ell}\right)^{\frac{\ell-1}{2}} = \frac{k-\ell}{a^{\frac{\ell}{2}} \cdot b^{\frac{\ell}{2}}} = \left(\frac{a}{\ell}\right) \cdot \left(\frac{b}{\ell}\right)$ und $\left(\frac{a}{\ell}\right)$.
(g) $\left(\frac{ab}{\ell}\right) = \left(\frac{ab}{\ell}\right)^{\frac{\ell-1}{2}} = \frac{k-\ell}{a^{\frac{\ell}{2}} \cdot b^{\frac{\ell}{2}}} = \left(\frac{a}{\ell}\right) \cdot \left(\frac{b}{\ell}\right)$ und $\left(\frac{a}{\ell}\right)$.
(g) $\left(\frac{ab}{\ell}\right) = \left(\frac{ab}{\ell}\right)^{\frac{\ell-1}{2}} = \frac{k-\ell}{a^{\frac{\ell}{2}} \cdot b^{\frac{\ell}{2}}} = \left(\frac{a}{\ell}\right) \cdot \left(\frac{b}{\ell}\right)$ und $\left(\frac{a}{\ell}\right)$.
(g) $\left(\frac{ab}{\ell}\right) = \left(\frac{ab}{\ell}\right)^{\frac{\ell-1}{2}} = \frac{k-\ell}{2} \cdot b^{\frac{\ell}{2}} = \left(\frac{a}{\ell}\right) \cdot \left(\frac{b}{\ell}\right)$ und $\left(\frac{a}{\ell}\right)$.
(g) $\left(\frac{ab}{\ell}\right) = \left(\frac{ab}{\ell}\right)^{\frac{\ell-1}{2}} = \frac{k-\ell}{2} \cdot b^{\frac{\ell}{2}} = \left(\frac{a}{\ell}\right) \cdot \left(\frac{b}{\ell}\right)$ und $\left(\frac{a}{\ell}\right)$.
(g) $\left(\frac{ab}{\ell}\right) = \left(\frac{ab}{\ell}\right)^{\frac{\ell-1}{2}} = \frac{k-\ell}{2} \cdot b^{\frac{\ell}{2}} = \frac{k-\ell}{2}$

-r -r **Definition 3.7.3:** The *Gauss sum* associated to the prime ℓ is $g_{\ell} := \sum_{l=1}^{n-1} {\binom{a}{\ell}} \cdot \zeta^{a}$. (=) a= 50 **Proposition 3.7.4:** The Gauss sum satisfies $g_{\ell}^2 = \ell^* := (-1)^{\frac{\ell-1}{2}}\ell$. $\underbrace{\int \mathcal{A}_{\mathcal{A}}}_{a,b\in \mathbb{F}_{\mathcal{A}}^{\times}} = \sum_{a,b\in \mathbb{F}_{\mathcal{A}}^{\times}} \left(\frac{a}{\mathcal{A}}\right) \cdot J^{a} \cdot \left(\frac{b}{\mathcal{A}}\right) \cdot J^{b} = \sum_{a,b\in \mathbb{F}_{\mathcal{A}}^{\times}} \left(\frac{ab}{\mathcal{A}}\right) \cdot J^{a+b} = \sum_{a,b\in \mathbb{F}_{\mathcal{A}}^{\times}} \left(\frac{b}{\mathcal{A}}\right) \cdot J^{b+b} = \sum_{a,b\in \mathbb{F}_{\mathcal{A}^{\times}}} \left(\frac{b}{\mathcal{A}}\right) \cdot J^{b+b} = \sum$ $= \sum_{\substack{\substack{\substack{k \in \mathbb{N} \\ k \in \mathbb{N}$ **Proposition 3.7.5:** The unique subfield of K of degree 2 over \mathbb{Q} is $K' := \mathbb{Q}(\sqrt{\ell^*})$. $\frac{l'}{l'}: \left(k \left(\frac{1}{2k} \right) \subset K \right) \qquad \text{ for } \left(\frac{k}{k} \right) \leq \frac{1}{2} = \frac{1}{2} \left(\frac{k}{k} \right) = \frac{1}{2} \left(\frac{1}{2k} \right) = \frac{1}{2} \left(\frac{1}{2k}$ 22/(e-1)z = mine along z