Correction:

$$
[K / Q]=n
$$

Proposition 3.2.1: (a) For any \mathbb{Z}-submodule $\Gamma \subset K$ of rank n with an ordered \mathbb{Z}-basis $\left(x_{1}, \ldots, x_{n}\right)$ the following value depends only on Γ :

$$
\operatorname{disc}(\Gamma):=\operatorname{disc}\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}^{\times}
$$

(c) For any \mathbb{Z}-submodule $\Gamma \subset \mathcal{O}_{K}$ of rank n we have $\operatorname{disc}(\Gamma) \in \mathbb{Z} \backslash\{0\}$.

Reminder:

$$
\sin c\langle r|=\operatorname{dot}\left\langle\operatorname { N u } \left\langle x_{\bullet} \cdot x_{j} \|_{i, j}\right.\right.
$$

Consider an integer $n \geqslant 1$, take a primitive n-th root of unity ζ and set $K:=\mathbb{Q}\left(\mu_{n}\right)=\mathbb{Q}(\zeta)$.
Proposition 3.6.3: If $n \geqslant 2$, then for any a coprime to n we have $\frac{1-\zeta^{a}}{1-\zeta} \in \mathcal{O}_{K}^{\times}$. (Cyclotomic units)
Definition 3.6.4: The n-th cyclotomic polynomial Φ_{n} is the monic polynomial of degree $\varphi(n):=$

Theorem 3.6.5: The polynomial Φ_{n} is an irreducible element of $\mathbb{Z}[X]$. $a \in(\text { el mil })^{x}$
Jaunted- Schwernur: Afore.
Theorem 3.6.6: The extension K / \mathbb{Q} is finite galois of degree $\varphi(n)$ and there is a natural isomorphism $e: \operatorname{Gal}(K / \mathbb{Q}) \xrightarrow{\sim}(\mathbb{Z} / n \mathbb{Z})^{\times}$with the property
cy-lotomic character. $\quad \forall \gamma \in \operatorname{Gal}(K / \mathbb{Q}): \gamma(\zeta)=\zeta^{e(\gamma)}$.

$$
\begin{aligned}
& \Phi_{p}(X)=1+X+\ldots+X^{p-1} \\
& \Phi_{p}(Y+1) \text { Eatiohin EikNhi it p. }
\end{aligned}
$$

Theorem 3.6.7: If $n=\ell^{\nu}$ for a prime ℓ and an integer $\nu \geqslant 1$, then:

$$
\begin{aligned}
d=[k / Q] & =\varphi l u \\
& =[l-1) \ell^{\nu-1} .
\end{aligned}
$$

(a) We have $\Phi_{\ell^{\nu}}(X)=\sum_{i=0}^{\ell-1} X^{i^{\nu-1}}$.
(b) The ideal $(1-\zeta)$ of \mathcal{O}_{K} satisfies $(1-\zeta)^{\ell^{\nu-1}(\ell-1)}=(\ell)$.
(c) The ideal $(1-\zeta)$ is the unique prime ideal of \mathcal{O}_{K} above $(\ell) \subset \mathbb{Z}$ and has residue field $\mathcal{O}_{K} /(1-\zeta) \cong \mathbb{F}_{\ell}$.
(d) $\mathcal{O}_{K}=\mathbb{Z}[\zeta] \cong \mathbb{Z}[X] /\left(\Phi_{\ell^{\nu}}\right)$.
(e) $\operatorname{disc}\left(\mathcal{O}_{K}\right)= \pm \ell^{\ell \nu-1}(\nu \ell-\nu-1)$.

Proof: |a| $\Phi_{R^{\nu}}(x)=\frac{x^{\ell^{\nu}}-1}{x^{l^{\nu-1}-1}}=\sum_{i=0}^{l-1} x^{i \cdot e^{\nu-1}}$
(b) $\Phi_{2^{i}}(1) \stackrel{(x)}{=} \sum_{i=0}^{l-1} 1=l$

$$
\prod_{G \backslash \mathbb{T} \mid n \boxtimes)^{x}}\left(1-J^{a}\right) \in G_{k}^{x} \cdot \prod_{a}^{i=0}(1-J)=b_{k}^{x} \cdot(1-J)^{d}
$$

$$
\left.a \in 也 \ln 巴\right|^{x} \text { es } r \text { beam } 0
$$

(c) $\operatorname{Nm}(\langle\ell\rangle) \stackrel{\text { def }}{=}\left[G_{k}: G_{k} \ell\right]=\ell^{d}$ beam $G_{k} \cong \mathbb{Z}^{d}$ as \mathbb{D}-m orel.

$$
\operatorname{Nm}\left\langle(1-Y\rangle^{\alpha}\right\rangle=\operatorname{Nim}((1-y)\rangle^{d}=\left[g_{x}:(1-y)\right]^{d}
$$

$\left[\operatorname{lan} 1: \forall k \geq 1: \sigma_{k}=\mathbb{Z}[y]+(1-y)^{r} \cdot \sigma_{k}\right.$ ．
raff：$k=1: G_{k}=\mathbb{Z}+(1-y) \cdot G_{k}=\mathbb{Z}[7]+(1-3) \cup_{k}$

Itake：$\forall k \geq 1: \quad G_{k}=\mathbb{Q}[y]+e^{k} \cdot \Delta k$ ． qul
beame $e^{2} \cdot \sigma_{k}=(1-Y)^{d t} \cdot \sigma_{k}$ ．
Where［ble ：巴［y］］is minc No Q ．
Clani 2： $\operatorname{dice}\left(1, J, \ldots J^{d-1}\right)= \pm l^{N}$ for inirn $N \geq 1$ ．
Pan：$\sum:=\operatorname{are}(u / \Delta a \mid \equiv \mathbb{Q} / u \mathbb{S})^{x}$

$$
\tau=\sigma \rho
$$

noto punari

$$
\begin{aligned}
& = \pm \prod_{a}\left\langle y^{a}-y^{a b}\right)= \pm \prod_{a, b} y^{a} \cdot\left(1-y^{a(1-b)}\right\rangle E \square_{K}^{x} \cdot \prod_{a, b}\left(1-子^{a(1-b)}\right)
\end{aligned}
$$

$\operatorname{Rr}^{(b)} i^{\mu} \boxtimes\left(1-y^{1-b}\right)^{(l-\eta)} \cdot e^{r-1} \in G_{k}^{x} \cdot l$ ．
molece e^{1} ．
（d）

$$
P_{\text {or }} 1.7 .5 \Rightarrow<_{k}\left[\frac{1}{\text { dise }[\mathbb{Z}[J])} \cdot \mathbb{Z}[y]=\frac{1}{\mathbb{Q}^{N}} \cdot \mathbb{Z}[J]\right.
$$

Centine wh $\left[\right.$ lain $1 \Rightarrow G_{L}=D[丁]$ ．

$$
\boxtimes[x] /\left(\Phi_{k}\right) \xrightarrow{\leadsto} \boxtimes[J]=\zeta_{k}
$$

（e） $\left.\operatorname{live}\left(\sigma_{k}\right)=\operatorname{live} \mid D[7]\right)= \pm e^{N}$ ．
qeal．

$$
\begin{aligned}
& l=(l-1) e^{n-1} \\
& \Rightarrow \frac{\operatorname{dic}\left\langle\left(\Phi_{n}\right)\right.}{E 巴(|0|}=U \cdot \frac{e^{N}}{E_{Q} \backslash \mid 0!} \text { for } N \geq 1 \text { and } n \in \Delta_{K}^{x} \text {. } \\
& \Rightarrow u \in \mathbb{Z}^{x}=\{ \pm 1\} \text {. }
\end{aligned}
$$

Theorem 3．6．8：For arbitrary n we have：
（a） $\mathcal{O}_{K}=\mathbb{Z}[\zeta]$ ．
（b）The discriminant $\operatorname{disc}\left(\mathcal{O}_{K}\right) \in \mathbb{Z}$ is divisible precisely by the primes dividing n ．
Pup：$n=1: J=1, \Delta_{k}=\mathbb{R}$ ，hire \mid ，$=1$ ． $n=Q^{\nu}$ for 2 pier，$\gg 0$ ：The．3．6．7．
$n=m \cdot m^{\prime}$ for $\left.m, m^{n}\right\rangle 1$ co pine．\Rightarrow Lenitese ramanitor the：

$$
\begin{aligned}
& \mathbb{Q} \ln \mathbb{\sim} \sim \mathbb{Q} / m \mathbb{Q} \times \mathbb{Z} / n^{\prime} \mathbb{Z} . \\
& \Rightarrow r_{n} \text { 三 } \quad \mu_{m} x \mu_{m} \\
& \operatorname{ad}(T / \ln D)^{x} \approx\langle T / \min]^{k} \times(R / \operatorname{mid})^{x} .
\end{aligned}
$$

So $Q\left(r_{m}\right)$ and $Q\left(r_{m}\right)$ ane liners dizfinct an 有 al $Q\left\langle\mu_{m}, \mu_{n}\right\rangle=Q\left\langle r_{n}\right\rangle$ ．
$\Rightarrow\langle a\rangle \&\langle b\rangle$.
ged．
3.7 Quadratic Reciprocity

Fix an odd prime ℓ and set $K:=\mathbb{Q}\left(\mu_{\ell}\right)$ and $\zeta:=e^{\frac{2 \pi i}{\epsilon}}$.
Definition 3.7.1: The Legendre symbol of an integer a with respect to ℓ is

$$
\left(\frac{a}{\ell}\right):=\left\{\begin{array}{l}
\frac{0}{} \quad \text { if } a \equiv 0 \bmod (\ell), \\
+1 \quad \text { if } a \equiv b^{2} \bmod (\ell) \\
\underline{-1 \quad \text { otherwise } .}
\end{array}\right.
$$

In the first two cases a is called a quadratic residue, otherwise a quadratic non-residue modulo (ℓ).
Proposition 3.7.2: For any integers a, b we have:
(a) $\left(\frac{a}{\ell}\right)=\left(\frac{b}{\ell}\right)$ whenever $a \equiv b \bmod (\ell)$.
(b) $\left(\frac{a}{\ell}\right) \equiv a^{\frac{\ell-1}{2}} \bmod (\ell)$.
(c) $\left(\frac{a b}{\ell}\right)=\left(\frac{a}{\ell}\right)\left(\frac{b}{\ell}\right)$.
(d) $\overline{\left(\frac{1}{\ell}\right)=(-1)^{\frac{\ell-1}{2}}}$.

rand: <a| $\checkmark \quad\left[\begin{array}{l}a \\ n\end{array}\right] \longleftrightarrow[\underset{n}{\alpha}]$
(b) ore if $l \mid a$; othmia: $\mathbb{F}_{8}^{x} \cong \mathbb{Z} /(l-1) \mathbb{R}$

$$
\sin =2 \mathbb{T} /(\mathbb{R}-1) \mathbb{R}
$$

$$
\text { so }[a] \text {; a venn se } 2 / \alpha \text { if }\left[\frac{1-1}{2} \cdot \alpha\right]=[a]
$$

$$
\text { of }\left[a^{\frac{R-1}{2}}\right]=[1] \text {. }
$$

$$
\text { themis }\left[\frac{x-1}{2} \cdot \alpha\right]=\left[\frac{x-1}{2}\right] \Rightarrow\left[a^{\frac{k-1}{2}}\right]=[-1]
$$

(l).
R $\geqslant 3$.\rightarrow egmein.
(d) $\left(\frac{-1}{e}\right)^{(\Delta)} \equiv(-1)^{\frac{n-1}{2}} \Rightarrow$ ending.

Definition 3.7.3: The Gauss sum associated to the prime ℓ is $g_{\ell}:=\sum_{a=1}^{\ell-1}\left(\frac{a}{\ell}\right) \cdot \zeta^{a}$.

$$
\begin{aligned}
& a b^{-1}=c \\
& \Leftrightarrow \quad a=1<
\end{aligned}
$$

Proposition 3.7.4: The Gauss sum satisfies $g_{\ell}^{2}=\ell^{*}:=(-1)^{\frac{\ell-1}{2}} \ell$.

$$
\begin{aligned}
& =\sum_{c \in \mathbb{F}_{l}^{x}}\left(\frac{s}{l}\right) \cdot[\underbrace{}_{b \in \mathbb{F}_{l}^{x}}\left\langle\sigma^{\langle+1}\right\rangle^{b}]
\end{aligned}
$$

Proposition 3.7.5: The unique subfield of K of degree 2 over \mathbb{Q} is $K^{\prime}:=\mathbb{Q}\left(\sqrt{\ell^{*}}\right)$.

