Reminder:

Fix an odd prime ℓ and set $K:=\mathbb{Q}\left(\mu_{\ell}\right)$ and $\zeta:=e^{\frac{2 \pi i}{\ell}}$.
Definition 3.7.1: The Legendre symbol of an integer a with respect to ℓ is

$$
\left(\frac{a}{\ell}\right):=\left\{\begin{array}{l}
\frac{0}{} \text { if } a \equiv 0 \bmod (\ell) \\
\frac{+1}{} \text { if } a \equiv b^{2} \bmod (\ell) \text { for some } b \in \mathbb{Z} \backslash \ell \mathbb{Z} \\
\underline{-1} \text { otherwise. }
\end{array}\right.
$$

Definition 3.7.3: The Gauss sum associated to the prime ℓ is $g_{\ell}:=\sum_{a=1}^{\ell-1}\left(\frac{a}{\ell}\right) \cdot \zeta^{a}$.
Proposition 3.7.4: The Gauss sum satisfies $g_{\ell}^{2}=\ell^{*}:=(-1)^{\frac{\ell-1}{2} \ell}$.

Proposition 3.7.6: For any distinct odd primes ℓ, p we have $\left(\frac{\ell^{*}}{p}\right)=\left(\frac{p}{\ell}\right)$.

$$
l^{*}, p \text { spice } \Rightarrow \underbrace{\left\langle\frac{e^{*}}{p}\right) \equiv\left(\frac{p}{e}\right)}_{E\{ \pm 1\}} \underbrace{\text { and } p^{\Delta} k} \text {. And }\left(p^{\Delta} k \wedge \boxtimes\right)=\lfloor p \mathbb{Z}\rfloor .
$$

$$
p \geqslant 3 \quad \Rightarrow \quad\left(\frac{R^{*}}{p}\right)=\left(\frac{p}{R}\right)
$$

yes.

Theorem 3.7.7: (Gauss Quadratic Reciprocity Law)
(a) For any distinct odd primes ℓ, p we have $\left(\frac{\ell}{p}\right)\left(\frac{p}{\ell}\right)=(-1)^{\frac{(p-1)(\ell-1)}{4}}$.
(b) For any odd prime ℓ we have $\left(\frac{-1}{\ell}\right)=(-1)^{\frac{\ell-1}{2}}$. (First supplement)
(c) For any odd prime ℓ we have $\left(\frac{2}{\ell}\right)=(-1)^{\frac{\ell^{2}-1}{8}}$. (Second supplement)

Pouf (a): $l=(-1)^{\frac{l-1}{2}} \cdot l^{*}$

$$
\begin{aligned}
& \text { nf <u : } \quad l=(-1)^{\frac{n}{2}} \cdot l^{*} \\
& \Rightarrow\left\langle\frac{l}{p}\right) \cdot\left(\frac{p}{l}\right)=\left(\frac{-1}{p}\right\rangle^{\frac{l-1}{2}} \cdot\left(\frac{l^{*}}{p}\right) \cdot\left(\frac{p}{R}\right\rangle=\left(\langle-1)^{\frac{p-1}{2}}\right)^{\frac{l-1}{2}}
\end{aligned}
$$

Example: $\left(\frac{127}{163}\right)=(-1)^{63-81} \cdot\left(\frac{163}{127}\right)=-\left(\frac{36}{127}\right)=-\left\langle\frac{6^{2}}{127}\right\rangle=-1$.

$$
\begin{aligned}
& \left(\frac{892}{997}\right)=\left(\frac{2^{2} \cdot 223}{997}\right)=\left(\frac{223}{997}\right)=(-1)^{111 \cdot 498} \cdot\left(\frac{957}{223}\right)=+\left(\frac{105}{223}\right)= \\
& 892=2.446\rangle=\left(\frac{3}{223}\right) \cdot\left\langle\frac{5}{223}\right) \cdot\left\langle\frac{7}{223}\right\rangle=\underbrace{(-1)^{1 \cdot 111}}_{-1} \cdot\left\langle\frac{223}{3}\right) \cdot \underbrace{(-1)^{2 \cdot 111}}_{+1} \cdot\left(\frac{22)}{5}\right) \cdot \underbrace{(-1)^{3 \cdot 111}}_{-1} ;\left(\frac{273}{7}\right) \\
& =4.223 \\
& \begin{array}{l}
757 \\
852 \\
\hline 105
\end{array} \\
& =+\underbrace{\left(\frac{1}{3}\right)}_{1} \cdot\left(\frac{3}{5}\right) \cdot\left(\frac{-7}{7}\right)=\underbrace{\langle-1)^{1 \cdot 2}}_{t 1} \cdot\left(\frac{\sqrt{2}}{3}\right) \cdot \underbrace{(-1)^{3}}_{-1}=-\underbrace{\left(\frac{2}{3}\right)}_{-1}=1
\end{aligned}
$$

Nachtrag: 364^2 equiv 892 \bod 997

4 Additive Minkowski theory

Reminder:

Fix a finite extension K / \mathbb{Q} of degree n. Abbreviate $\Sigma:=\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$ and set

s):= the number of $\sigma \in \Sigma$ with $\sigma(K) \not \subset \mathbb{R}$, up to complex conjugation.

Proposition 3.4.1: We have $r+2 s=n$.

Proposition 3.4.3: For every fractional ideal \mathfrak{a} of \mathcal{O}_{K} the image $j(\mathfrak{a})$ is a complete lattice in $K_{\mathbb{R}}$.
Let $\sigma_{1}, \ldots, \sigma_{r}$ be the real embeddings and $\sigma_{r+1}, \ldots, \sigma_{n}$ the non-real embeddings such that $\bar{\sigma}_{r+j}=\bar{\sigma}_{r+j+s}$ for all $1 \leqslant j \leqslant s$.

$$
\Sigma=\left\{\sigma_{1}, \ldots, G_{n}\right\}
$$

Proposition 3.4.4: We have an isomorphism of \mathbb{R}-vector spaces
4.1 Euclidean embedding

We endow $K_{\mathbb{C}}:=\mathbb{C}^{\Sigma}$ with the standard hermitian scalar product

$$
\left\langle\left(z_{\sigma}\right)_{\sigma},\left(w_{\sigma}\right)_{\sigma}\right\rangle:=\sum_{\sigma \in \Sigma} \bar{z}_{\sigma} w_{\sigma} .
$$

Proposition 4.1.1: Its restriction to $K_{\mathbb{R}} \times K_{\mathbb{R}}$ has values in \mathbb{R} and turns $K_{\mathbb{R}}$ into a euclidean vector space.
Pal: $\left\langle z_{\sigma}\right)_{5}\left\langle\omega_{K}\right\rangle_{5} \in K_{\mathbb{R}} \Rightarrow \quad z_{\bar{\sigma}}=\overline{z_{\sigma}} \quad$ ald $\quad \omega_{\sigma}=\overline{\omega_{6}}$

$$
\begin{equation*}
\Rightarrow \overline{\sum_{\sigma \in \Sigma} \bar{z}_{\sigma} \cdot w_{\sigma}}=\sum_{\sigma \in \Sigma} z_{\sigma} \cdot \bar{w}_{\sigma}=\sum_{\tau \in \Sigma} z_{\bar{\tau}} \cdot \bar{w}_{\bar{\tau}}=\sum_{\tau \in \Sigma} \bar{z}_{\tau} \cdot w_{\tau} \tag{gel.}
\end{equation*}
$$

Proposition 4.1.2: Under the isomorphism of Proposition 3.4.4 this scalar product on $K_{\mathbb{R}}$ corresponds to the following scalar product on \mathbb{R}^{n} :

$$
\left\langle\left(x_{j}\right)_{j},\left(y_{j}\right)_{j}\right\rangle:=\sum_{i=1}^{r} x_{j} y_{j}+\sum_{i=r+1}^{n} 2 x_{j} y_{j} .
$$

Prof heft Na the cowreientions reader! ©
4.2 Lattice bounds

Proposition 4.2.1: For any fractional ideal \mathfrak{a} of \mathcal{O}_{K} we have

$$
j\langle x|=\left\langle\left. r_{i}\langle x|\right|_{i}\right.
$$

$$
\operatorname{vol}\left(K_{\mathbb{R}} / j(\mathfrak{a})\right)=\sqrt{\operatorname{disc}(\mathfrak{a})}=\operatorname{Nm}(\mathfrak{a}) \cdot \sqrt{\left|d_{K}\right|} .
$$

$$
\begin{aligned}
& T=\left\langle\sigma_{i}\left\langle a_{j}\right\rangle\right\rangle_{i, j=1}^{n} \\
& \operatorname{det}\langle T\rangle^{2}=\operatorname{Riv}\langle\langle\pi\rangle \\
& \left.\operatorname{val}\left\langle K_{\mathbb{R}}\right| j(m)\right)^{2}=\left.\operatorname{dit}\left(\left\langle j \mid a_{i}\right\rangle, j\left\langle a_{k}\right\rangle\right\rangle\right|_{i, l} ^{n}, \\
& =\operatorname{det}\left\langle\bar{T} \cdot T^{\top}\right\rangle=\mid\left.\operatorname{Lat}\langle T|\right|^{2} \\
& w h=\mid \operatorname{det}\langle T\rangle=\sqrt{\text { die }\left\langle L_{n}\right\rangle}
\end{aligned}
$$

Theorem 4.2.2: Consider a fractional ideal \mathfrak{a} of \mathcal{O}_{K} and positive real numbers c_{σ} for all $\sigma \in \Sigma$ such that

$$
\prod_{\sigma \in \Sigma} c_{\sigma}>\left(\frac{2}{\pi}\right)^{s} \cdot \sqrt{\left|d_{K}\right|} \cdot \operatorname{Nm}(\mathfrak{a}) .
$$

Then there exists an element $a \in \mathfrak{a} \backslash\{0\}$ with the property

$$
\forall \sigma \in \Sigma:|\sigma(a)|<c_{\sigma}
$$

