5 Multiplicative Minkowski theory

$$
\begin{aligned}
& {[k / k]=n} \\
& \sum=\operatorname{tam}(k, \mathbb{C}) .
\end{aligned}
$$

5.1 Roots of unity

$$
\mathbb{C}^{x} \cong S^{1} \times \mathbb{R}
$$

Lemma 5.1.1: We have a short exact sequence

Set $\Gamma:=\ell\left(\mathcal{O}_{K}^{\times}\right)$and let $\mu(K)$ denote the group of elements of finite order in K^{\times}. This is $G^{x} K$
Proposition 5.1.2: The group $\mu(K)$ is a finite subgroup of \mathcal{O}_{K}^{\times}and we have a short exact sequence

$$
1 \longrightarrow \mu(K) \longrightarrow \mathcal{O}_{K}^{\times} \longrightarrow \Gamma \longrightarrow 0 .
$$

Pup: $G_{k} \subset K_{\mathbb{N}}^{x}$; dirmate.
$\Rightarrow \operatorname{lar}\left(R \mid G_{K}^{K}\right)$; dir ante and copt $\Rightarrow f$ site.

Proposition 5.1.3: The group $\mu(K)$ is cyclic of even order.
Pas: $r(k) \Rightarrow \pm 1 \Rightarrow|r\langle k\rangle|=$:m evan.

$$
\left\{3 \in \mathbb{E}^{x} \mid y^{n}=1\right\}=\text { eyhiif abhor. End. }
$$

Example 5.1.4: For any squarefree $d \in \mathbb{Z} \backslash\{1\}$ we have

$$
\underline{\mu(\mathbb{Q}(\sqrt{d}))}=\left\{\begin{array}{l}
\frac{\text { cyclic of order } 6 \text { if } d=-3}{}, \\
\text { cyclic of order } 4 \text { if } d=-1, \\
\text { cyclic of order } 2 \text { otherwise. }
\end{array}\right.
$$

$$
\begin{aligned}
& 2 / m \longrightarrow\left[a\left(\mu_{m}\right) / \Delta \Omega\right]=\mid\left[\mathbb{B} /\left.m \mathbb{D}\right|^{k} \mid=\varphi(m)\right. \\
& \varphi(m) \leq 2 \Leftrightarrow m=2,4,6 \text {. } \\
& G(\mu-G)=R(\sqrt{-3}) \\
& \frac{1+\sqrt{-3}}{2} \\
& G\left\langle r_{4}\right\rangle=G(i)
\end{aligned}
$$

5.2 Units

Lemma 5.2.1: The group Γ is a lattice in \mathbb{R}^{Σ}.

$$
\Rightarrow G_{k}^{x} \cap l^{-1}(x) \subset \sigma_{k} \cap R^{-1}(x)=\text { hike. Io } \Gamma_{n} x \text { fin gk. }
$$

Consider the homomorphisms

$$
\begin{array}{ll}
\mathrm{Nm}: & K_{\mathbb{C}}^{\times}=\left(\mathbb{C}^{\times}\right)^{\Sigma} \longrightarrow \mathbb{C}^{\times}, \\
\mathrm{Tr}: & \left(\mathbb{R}^{\times}\right)^{\Sigma} \longrightarrow \mathbb{R}, \\
\left(z_{\sigma}\right)_{\sigma} \longmapsto \prod_{\sigma \in \Sigma} z_{\sigma} \\
\left(t_{\sigma}\right)_{\sigma} \longmapsto \sum_{\sigma \in \Sigma} t_{\sigma}
\end{array}
$$

Lemma 5.2.2: We have a commutative diagram

$$
\log |\bar{\sigma}(x)|=\log |\sigma(x)|
$$

Consider the \mathbb{R}-subspaces

$$
\begin{aligned}
\left(\mathbb{R}^{\Sigma}\right)^{+} & :=\left\{\left(t_{\sigma}\right)_{\sigma} \in \mathbb{R}^{\Sigma} \mid \forall \sigma: t_{\bar{\sigma}}=t_{\sigma}\right\} \\
H & :=\operatorname{ker}\left(\operatorname{Tr}:\left(\mathbb{R}^{\Sigma}\right)^{+} \rightarrow \mathbb{R}\right) .
\end{aligned}
$$

Lemma 5.2.3: We have $\Gamma \subset H$ and $\operatorname{dim}_{\mathbb{R}}(H)=r+s-1$.

$$
H=\left\{\left(t_{1, \ldots}, t_{r}, t_{r+1}, \ldots, t_{r+3}, t_{r+1, \ldots} t_{r+5}\right) \in \mathbb{R}^{n} \mid \sum=\Delta\right\}
$$

zed.

5.3 Dirichlet's unit theorem

Theorem 5.3.1: The group Γ is a complete lattice in H.

Theorem 5.3.2: The group \mathcal{O}_{K}^{\times}is isomorphic to $\mu(K) \times \mathbb{Z}^{r+s-1}$.
Caution 5.3.3: The isomorphism is uncanonical.

$$
\rightarrow \quad \prod_{k}^{x}=r\langle u\rangle \times \varepsilon_{1}^{\mathbb{Z}} \times \ldots+\sum_{r+s-1}^{\mathbb{R}} . \quad \underline{v}^{-1} .
$$

Corollary 5.3.4: The group \mathcal{O}_{K}^{\times}is finite if and only if K is \mathbb{Q} or imaginary quadratic.

Corollary 5.3.5: The group \mathcal{O}_{K}^{\times}has \mathbb{Z}-rank 1 if and only if $(r, s) \in\{(2,0),(1,1),(0,2)\}$. In that case we have

$$
\mathcal{O}_{K}^{\times}=\mu(K) \times \varepsilon^{\mathbb{Z}}
$$

for some unit ε of infinite order.

Definition 5.3.6: Any choice of such ε is then called a fundamental unit.
5.4 The real quadratic case

Suppose that $K=\mathbb{Q}(\sqrt{d})$ for a squarefree $d>1$ and choose an embedding $K \hookrightarrow \mathbb{R}$.
Fact 5.4.1: There is a unique choice of fundamental unit $\varepsilon>1$.

$$
T_{k}^{x}=\{ \pm 1\} \times \varepsilon^{\mathbb{2}} \text {. }
$$

Proposition 5.4.2: If $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{d}]$, then
(a) $\mathcal{O}_{K}^{\times}=\left\{a+b \sqrt{d} \mid a, b \in \mathbb{Z} \sqrt{a^{2}-b^{2} d= \pm 1}\right\}$.
(b) $\widehat{\mathcal{O}_{K}^{\times} \cap \mathbb{R}^{>1}}=\left\{a+b \sqrt{d} \mid a, b \in \mathbb{Z}, a^{2}-b^{2} d= \pm 1,\langle a, b>0\}\right.$.
(c) The fundamental unit $\underline{\varepsilon>1}$ is the element $a+b \sqrt{d} \in \mathcal{O}_{K}^{\times} \cap \mathbb{R}^{>1}$ as in (b) with the smallest value

Comments if $a^{2}-b^{2} d= \pm 1$ the $(a+b \sqrt{a})\langle a-b \sqrt{a}\rangle \in \square_{k}^{x} \rightarrow a+\delta \sqrt{d} \in \square_{k}^{x}$.
(b)

$$
\begin{aligned}
& \varepsilon=a+b \sqrt{d} \in \sigma_{L}^{x} \Rightarrow\left\{ \pm \varepsilon^{ \pm 1} \mid=\{ \pm a \pm \delta \sqrt{x} \mid \text { alevin }\}\right. \\
& \Rightarrow[\geqslant 1 \Leftrightarrow a, d \geqslant 0 \text {. if } b=\Delta \text { tum } a= \pm 1 \Rightarrow[\geqslant \pm 1 \\
& \text { If } a=0 \text { the }-b^{2} d= \pm 1 \Rightarrow 4 \text {. mean } d>1 \text {. }
\end{aligned}
$$

Lo $\varepsilon>1 \Leftrightarrow \pi, 6>0$.
[「〕

$$
\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] \supset \mathbb{Z}[\sqrt{d}] \quad \mathbb{Z}[\sqrt{d}]=\mathbb{Z}[m \sqrt{d}] .
$$

Theorem 5.4.3: For any squarefree integer $d>1$ there are infinitely many solutions $(a, b) \in \mathbb{Z}^{2}$ of the diophantine equation $a^{2}-\overline{b^{2} d=1}$.
$\operatorname{rmp}_{i}\left[=a+b \sqrt{1} \in 4^{x} k\right.$
$(i 81 \neq 1<k] \quad \sum>1 \Rightarrow \forall k \geq 1: \operatorname{Nm}\left\langle\varepsilon^{2 h}\right\rangle=\operatorname{Nm}\left\langle\left.\varepsilon\right|^{2 k}=1\right.$.

Remark 5.4.4: The equation $a^{2}-b^{2} d=-1$ may or may not have a solution $(a, b) \in \mathbb{Z}^{2}$. But if it has a solution, it has infinitely many. $\varepsilon^{2 k+1}$
Proposition 5.4.5: The fundamental unit $\varepsilon>1$ of K with discriminant D satisfies

$$
\begin{aligned}
& D=\int_{1}^{1} \quad \lambda \equiv 1(4) \\
& 4 x \text { da } \\
& \Rightarrow D \geqslant \sqrt{2} .
\end{aligned}
$$

$$
\varepsilon>\frac{\sqrt{D}+\sqrt{D-4}}{2}>1
$$

Consequently, if some unit of infinite order $u>1$ is known, we have $u=\varepsilon^{k}$ for some $1 \leqslant k \leqslant$ $\log (u) / \log ((\sqrt{D}+\sqrt{D-4}) / 2)$ and one can efficiently find ε.

Pul: Lat Σ 'be the petain arginine $f \Sigma \approx \Sigma>1 \geq \Sigma^{\prime}$

Remark 5.4.6: One can effectively find ε using continued fractions.
Express: Dottle f testis: $13 b^{2}+1=a^{2} \quad \Leftrightarrow \quad a^{2}-13 b^{2}=1$.

$$
\begin{aligned}
& K=\Delta\langle\sqrt{13}\rangle, \Delta_{K}=\mathbb{Z}\left[\omega_{\omega}\right] \text { with } \omega=\frac{1+\sqrt{13}}{2} \text {. } \\
& \varepsilon:=1+\omega=\frac{3+\sqrt{17}}{2} \Rightarrow N m(\Sigma)=\frac{3^{2}-13}{4}=-1 \\
& \sigma_{k}^{k}=\{ \pm 1\} \times \Sigma^{\mathbb{Z}} \\
& \Rightarrow \varepsilon^{2}=\frac{9+6 \sqrt{13}+13}{4}=\frac{11+3 \sqrt{13}}{2} \notin \mathbb{2}[\sqrt{13}] \\
& \varepsilon^{4}+2[\sqrt{13}] \\
& \varepsilon^{6} \in \nabla[\sqrt{13}] \text {. } \\
& い \\
& 549+180 \cdot \sqrt{13} \\
& \rightarrow \quad a+b \sqrt{\lambda}=\Sigma^{6 i} \text { ar } k \geq 1 \text {. } \\
& \Rightarrow \quad a \geq 649 \quad \Rightarrow \quad a^{2} \geq 549^{2} \approx 421^{\prime} 200
\end{aligned}
$$

Excrete: $K=\mathbb{Q}\langle\sqrt{3}\rangle \Rightarrow \Delta_{k}=\mathbb{Z}[\sqrt{3}], \varepsilon=2+\sqrt{3}$ has $N_{m}\langle\varepsilon\rangle=\langle 2+\sqrt{3}|\langle 2-\sqrt{3}|=$ $=4-3=1$. $\rightarrow G_{k}^{x}=\{ \pm 1\} \times 2^{\text {R }}$.
$\mathbb{C} コ L=G_{Q}\langle\sqrt{3}, \sqrt{-2}\rangle$ has $\langle r, s|=\langle 0,2\rangle \Rightarrow \Delta_{L}^{x} \cong \mu\langle L\rangle \times \mathbb{I}$.

$$
\mu\langle L\rangle=\{ \pm 1\} .
$$

$$
\{ \pm 1\} \times \mathbb{Z}
$$

ViA $G_{L}^{x}=\{ \pm 1\} \times \delta^{Q} \Rightarrow\left\{= \pm \delta^{2}\right.$ for arm $\mathcal{E} \in \mathbb{Z},\{0\}$. WLOK $2>0$.

$$
\begin{aligned}
& \operatorname{cal}\langle L| k \mid=\left\{\dot{L},\left\langle\overline{\langle J} \Rightarrow G_{L}^{x}=\{ \pm 1\} \times \bar{\delta}^{\mathbb{Z}} \Rightarrow \bar{\delta}= \pm 5^{ \pm 1}\right. \text {. }\right. \\
& \Rightarrow \quad \bar{\delta}^{k}= \pm\left|\delta^{2}\right\rangle^{ \pm 1} \\
& \nabla \varepsilon=\bar{\varepsilon}= \pm \varepsilon^{ \pm 1} \\
& \Rightarrow \bar{\delta}= \pm \delta \Rightarrow \bar{\delta}^{2}=\delta^{2} \Rightarrow \delta^{2} E K \Rightarrow \delta^{2} \leftarrow G_{k}^{x} \Rightarrow 2 \leq 2 \text {. }
\end{aligned}
$$

Tan: $\sqrt{ \pm \varepsilon} \in L$?
$\mathcal{L} \ddagger k$ th $\bar{\delta}=-\delta \Rightarrow \delta \sigma: \mathbb{R} \Delta \delta^{2}<\Delta \Rightarrow \delta^{2}=-\Sigma$.
Tat: $\sqrt{-\varepsilon} E \bar{L}$?

$$
\begin{aligned}
& \overline{\sqrt{-2}}=-\sqrt{-2} \rightarrow \overline{(\delta \cdot \sqrt{-2})}=\delta \cdot \sqrt{-2} \Rightarrow \sqrt{\sqrt{-2}}=a+b \sqrt{3} \quad a, b \in \mathbb{Q} \\
& \alpha_{l} \delta \in \mathbb{Z}
\end{aligned}
$$

