6 Extensions of Dedekind rings

6.1 Modules over Dedekind rings

Let A be a Dedekind ring with quotient field K.

Definition 6.1.1: Consider an A-module M.

 $\begin{array}{c} A = \mathbb{Z} \\ \exists_{n \neq 0} : n \cdot n = 0 \end{array}$

(a) An element $m \in M$ is called *torsion* if there exists $a \in A \setminus \{0\}$ such that am = 0.

(b) The module M is called *torsion* if every element of M is torsion.

(c) The module M is called *torsion-free* if no non-zero element of M is torsion.

Theorem 6.1.2: Any finitely generated *A*-module is isomorphic to the direct sum of a torsion module and a torsion-free module.

Theorem 6.1.3: Any non-zero finitely generated torsion-free A-module is isomorphic to $\mathfrak{a} \oplus A^{r-1}$ for a non-zero ideal $\mathfrak{a} \subset A$ and an integer $r \ge 1$.

Theorem 6.1.4: Any finitely generated torsion A-module is isomorphic to

- (a) $\bigoplus_{i=1}^{r} A/\mathfrak{p}_{i}^{e_{i}}$ for $r \ge 0$ and maximal ideals $\mathfrak{p}_{i} \subset A$ and integral exponents $e_{i} \ge 1$.
- (b) $\bigoplus_{i=1}^{s} A/\mathfrak{a}_i$ for $s \ge 0$ and non-zero ideals $\mathfrak{a}_s \subset \ldots \subset \mathfrak{a}_1 \subsetneq A$.

Proposition 6.1.5: Consider a K-vector space V of finite dimension n and a finitely generated Asubmodule $M \subset V$ that generates V over K. Then M is isomorphic to a direct sum of n fractional ideals of A. 0-1V'= la (e) - V - k - 1 (7) Pump: The chi m n. n= D clear --- > D well sail N>D: China R. V- WK K-linen. A-lin map: Extilm: EXX = l(n)ck more his se. A- mel = in = hashed itere of A. los(x)= Z xb(·ILm;) = Z Kb; a, = K Rule in n=A. id-sol: N-N' Low lo(id-sol) Clam an - , an genucho of Vi ~ & - l ~ s ~ l = l - 2 = D コ「日のゴ」、「」、シート and bay-76, E log with Z bia, =1 Kik- oR) (m) Alm (in m n' hi sen **Proposition 6.1.6:** For any fractional ideals $\mathfrak{a}, \mathfrak{b}$ of A there is a natural isomorphism malle guiling V ~,~>0 wk $\mathfrak{ba}^{-1} \xrightarrow{\sim} \operatorname{Hom}_{A}(\mathfrak{a}, \mathfrak{b}), \quad c \mapsto (\varphi_{c} \colon a \mapsto ca).$ h7 m2 Frix h in her E b-il. n= la well defind. look on K me - jechie. The y Cal= CA Vale 17; chin K'EA 10) -1 KEA, a'x'sax. take 4 Elton p (10, 1) = +(1 x'= + (1 x')=+ (1 x)= + (1 x= cax = cax' Pick a Gen and at E = 4(a). a = K. So couch > WIAY = CA! I CEEDIN'CLUT WER

6.2 Decomposition of prime ideals

For the rest of this chapter we take a finite separable field extension L/K of degree n. Then the integral closure B of A in L is a finitely generated projecting A-module *grandrat* and itself a Dedekind ring. For any maximal ideal $\mathfrak{p} \subset A$ we abbreviate the residue field by $k(\mathfrak{p}) := A/\mathfrak{p}$, and likewise for any maximal ideal of B. Where applicable we let C be the integral closure of B in a finite separable extension M/L.

 $L > J > \mu$

KJA>r=ynA

Consider a maximal ideal $\mathfrak{p} \subset A$. Then $\mathfrak{p}B$ is a non-zero ideal of B and therefore has a prime factorization

$$\mathfrak{p}B = \mathfrak{q}_1^{e_1} \cdots \mathfrak{q}_r^{e_r}$$

unique

that generally

an K-vector of

with distinct maximal ideals $q_i \subset B$ and integral exponents $e_i \ge 1$

Proposition 6.2.1: (a) The ideals \mathfrak{q}_i are precisely the prime ideals of B above \mathfrak{p} .

- (b) For each *i* the residue field $k(\mathbf{q}_i)$ is a finite extension of the residue field $k(\mathbf{p})$.
- (c) Letting f_i denote the degree of this residue field extension, we have

 $\int \dots f: (a) g C g B C U_{1i} = g C U_{1i} \cap A = puic ideal f A.) = g = U_{1i} \cap A, i.e., U_{1i} \longrightarrow g.$ $u_{1} \subset B price ideal and g = g C U_{1} = U_{11}^{c} \dots v_{1r}^{c} = g B C U_{1}^{c} = D \exists i: U_{1i}^{c} C U_{1}^{c} = U_{1i}^{c} =$

$$= \lim_{k \to \infty} |g_i|^{k} |g_i|^{k} = \sum_{i=1}^{n} e_i \cdot \dim_{k} |g_i| |g_i|^{k} |g_i|^{k} = \sum_{i=1}^{n} e_i \cdot f_i \cdot \frac{\pi^{k}}{2}$$
Definition 6.2.2:
(a) The number $e_{q_i|p} := e_i$ is called the *ramification degree of* q_i over p .
(b) The number $f_{q_i|p} := f_i$ is called the *inertia degree of* q_i over p .
(c) We call q_i unramified over p if $e_i = 1$.
(d) We call q_i ramified over p if $e_i > 1$.

Definition 6.2.3:

- (a) We call **p** unramified in B if all $e_i = 1$, that is, if $pB = q_1 \cdots q_r \in ak$ dischool $p_i = k + q_i$. (b) We call **p** ramified in B if some $e_i > 1$.
- (b) We call \mathfrak{p} ramified in B if some $e_i > 1$.
- (c) We call \mathfrak{p} totally split in B if all $e_i = f_i = 1$, that is, if r = n and $\mathfrak{p}B = \mathfrak{q}_1 \cdots \mathfrak{q}_n$.
- (d) We call \mathfrak{p} totally inert in B if $r = e_1 = 1$, that is, if $\mathfrak{p}B$ is prime.
- (e) We call \mathfrak{p} totally ramified in B if $r = f_1 = 1$, that is, if $\mathfrak{p}B = \mathfrak{q}^n$ for a prime $\mathfrak{q} \subset B$.

Proposition 6.2.4: Suppose that $B = A[\beta]$ and let $f \in A[X]$ be the minimal polynomial of β above K. Set $\overline{f} := f \mod \mathfrak{p}$ and write $\overline{f} = \prod_{i=1}^{r} \overline{f}_{i}^{e_{i}}$ with inequivalent irreducible factors $\overline{f}_{i} \in k(\mathfrak{p})[X]$ and integral exponents $e_{i} \ge 1$. Choose $f_{i} \in A[X]$ with $\overline{f}_{i} = f_{i} \mod \mathfrak{p}$. Then $\mathfrak{p}B = \prod_{i=1}^{r} \mathfrak{q}_{i}^{e_{i}}$ with the prime ideals $\mathfrak{q}_{i} := \mathfrak{p}B + f_{i}(\beta)B$. $f_{i} = f_{i} (f_{i}) = f_{i}$

Example 6.2.5: Take $L = \mathbb{Q}(\sqrt{d})$ with $d \in \mathbb{Z} \setminus \{1\}$ squarefree. Then an odd prime p of \mathbb{Z} with

$$2 = \overline{\zeta} e_i e_i$$

$$\begin{pmatrix} \frac{d}{p} \end{pmatrix} = \begin{cases} 0 & \text{is (totally) ramified in } \mathcal{O}_L, & r=1, e_i=2 \\ 1 & \text{is (totally) decomposed in } \mathcal{O}_L, & r=2, t_i=e_i=1 \\ -1 & \text{is (totally) inert in } \mathcal{O}_L. & r=1, e_i=2, e_i=1 \end{cases}$$

Proposition 6.2.6: For any a prime $\mathfrak{r} \subset C$ above $\mathfrak{q} \subset B$ above $\mathfrak{p} \subset A$ we have

$$e_{\mathfrak{r}|\mathfrak{p}} = e_{\mathfrak{r}|\mathfrak{q}} \cdot e_{\mathfrak{q}|\mathfrak{p}} \quad \text{and} \quad f_{\mathfrak{r}|\mathfrak{p}} = f_{\mathfrak{r}|\mathfrak{q}} \cdot f_{\mathfrak{q}|\mathfrak{p}}.$$