
6 Extensions of Dedekind rings

6.1 Modules over Dedekind rings

Let A be a Dedekind ring with quotient field K.

Definition 6.1.1: Consider an A-module M .

(a) An element m � M is called torsion if there exists a � A� {0} such that am = 0.

(b) The module M is called torsion if every element of M is torsion.

(c) The module M is called torsion-free if no non-zero element of M is torsion.

Theorem 6.1.2: Any finitely generated A-module is isomorphic to the direct sum of a torsion module

and a torsion-free module.

Theorem 6.1.3: Any non-zero finitely generated torsion-free A-module is isomorphic to a ⇥ Ar�1
for a

non-zero ideal a ⇤ A and an integer r � 1.

Theorem 6.1.4: Any finitely generated torsion A-module is isomorphic to

(a)
Lr

i=1 A/p
ei
i for r � 0 and maximal ideals pi ⇤ A and integral exponents ei � 1.

(b)
Ls

i=1 A/ai for s � 0 and non-zero ideals as ⇤ . . . ⇤ a1 ⇥ A.



Proposition 6.1.5: Consider a K-vector space V of finite dimension n and a finitely generated A-

submodule M ⇤ V that generates V over K. Then M is isomorphic to a direct sum of n fractional ideals

of A.

Proposition 6.1.6: For any fractional ideals a, b of A there is a natural isomorphism

ba�1 ⇥
! HomA(a, b), c 7! (�c : a 7! ca).



6.2 Decomposition of prime ideals

For the rest of this chapter we take a finite separable field extension L/K of degree n. Then the integral

closure B of A in L is a finitely generated projective A-module of rank n and itself a Dedekind ring. For

any maximal ideal p ⇤ A we abbreviate the residue field by k(p) := A/p, and likewise for any maximal

ideal of B. Where applicable we let C be the integral closure of B in a finite separable extension M/L.

Consider a maximal ideal p ⇤ A. Then pB is a non-zero ideal of B and therefore has a prime factorization

pB = qe11 · · · qerr

with distinct maximal ideals qi ⇤ B and integral exponents ei � 1.

Proposition 6.2.1: (a) The ideals qi are precisely the prime ideals of B above p.

(b) For each i the residue field k(qi) is a finite extension of the residue field k(p).

(c) Letting fi denote the degree of this residue field extension, we have

rX

i=1

eifi = n.



Definition 6.2.2:

(a) The number eqi|p := ei is called the ramification degree of qi over p.

(b) The number fqi|p := fi is called the inertia degree of qi over p.

(c) We call qi unramified over p if ei = 1.

(d) We call qi ramified over p if ei > 1.

Definition 6.2.3:

(a) We call p unramified in B if all ei = 1, that is, if pB = q1 · · · qr.

(b) We call p ramified in B if some ei > 1.

(c) We call p totally split in B if all ei = fi = 1, that is, if r = n and pB = q1 · · · qn.

(d) We call p totally inert in B if r = e1 = 1, that is, if pB is prime.

(e) We call p totally ramified in B if r = f1 = 1, that is, if pB = qn for a prime q ⇤ B.



Proposition 6.2.4: Suppose that B = A[⇥] and let f � A[X] be the minimal polynomial of ⇥ above K.

Set f̄ := f mod p and write f̄ =
Qr

i=1 f̄
ei
i with inequivalent irreducible factors f̄i � k(p)[X] and integral

exponents ei � 1. Choose fi � A[X] with f̄i = fi mod p. Then pB =
Qr

i=1 q
ei
i with the prime ideals

qi := pB + fi(⇥)B.



Example 6.2.5: Take L = Q(
⌅
d ) with d � Z� {1} squarefree. Then an odd prime p of Z with

�d
p

⇥
=

�
⇥⇥⇥⇤

⇥⇥⇥⌅

0 is (totally) ramified in OL,
1 is (totally) decomposed in OL,

⇧1 is (totally) inert in OL.

Proposition 6.2.6: For any a prime r ⇤ C above q ⇤ B above p ⇤ A we have

er|p = er|q · eq|p and fr|p = fr|q · fq|p.


