Reminder:

Consider a maximal ideal $\mathfrak{p} \subset A$. Then $\mathfrak{p} B$ is a non-zero ideal of B and therefore has a prime factorization

$$
\mathfrak{p} B=\widehat{\mathfrak{q}_{1}^{e_{1}}} \cdots \mathfrak{q}_{e_{r}}^{e_{r}}
$$

with distinct maximal ideals $\mathfrak{q}_{i} \subset B$ and integral exponents $e_{i} \geqslant 1$.
Proposition 6.2.1: (a) The ideals \mathfrak{q}_{i} are precisely the prime ideals of B above \mathfrak{p}.

(b) For each i the residue field $k\left(\mathfrak{q}_{i}\right)$ is a finite extension of the residue field $k(\mathfrak{p})$.
(c) Letting f_{i} denote the degree of this residue field extension, we have

Proposition 6.2.4: Suppose that $B=A[\beta]$ and let $f \in A[X]$ be the minimal polynomial of β above K. Set $\bar{f}:=f \bmod \mathfrak{p}$ and write $\bar{f}=\prod_{i=1}^{r} \bar{f}_{i}^{e_{i}}$ with inequivalent irreducible factors $\bar{f}_{i} \in k(\mathfrak{p})[X]$ and integral
 $\mathfrak{q}_{i}:=\mathfrak{p} B+\overline{f_{i}(\beta) B}$.

Throughout the following we impose the
Assumption: \square

Example 6.2.6: Take $L=\mathbb{Q}(\sqrt{d})$ with $d \in \mathbb{Z} \backslash\{1\}$ squarefree. Then an odd prime p of \mathbb{Z} with

$$
\begin{aligned}
& \left(\frac{d}{p}\right)=\left\{\begin{aligned}
0 & \text { is (totally) ramified in } \mathcal{O}_{L}, \\
1 & \text { is (totally) decomposed in } \mathcal{O}_{L}, \\
-1 & \text { is (totally) inert in } \mathcal{O}_{L} .
\end{aligned}\right. \\
& \text { If } G_{L}=\mathbb{Z}[\sqrt{d}] \Rightarrow G_{L} \cong \mathbb{E}[x] /\left(x^{2}-1\right) \quad\left[\left.\left\langle\frac{d}{d}\right]=\Delta \Leftrightarrow p \right\rvert\, d \Leftrightarrow p \cdot G_{L}=\psi_{7}^{2} \text { for } L=\langle p, \sqrt{x}\rangle\right. \text {. } \\
& \Rightarrow G_{L} / p \sigma_{L} \cong \mathbb{F}_{p}[x] /\left(x^{2}-\alpha\right)\left\{\begin{array}{l}
\left(\frac{d}{p}\right)=1 \Leftrightarrow d \equiv a^{2} \operatorname{man}_{a} \in \mathbb{D}-p^{2},-\alpha\left\langle x^{2}-\alpha\right)=(x-a)(x+a)
\end{array}\right. \\
& \rightarrow p^{6} L=q_{y}^{\prime \prime} \quad 7=(p, \sqrt{1}-a)
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \sigma_{L}=\mathbb{Z}\left[\frac{1+\sqrt{2}}{2}\right] \cong \mathbb{P}[x] /\left\langle x^{2}-x+\frac{1-d}{4}\right\rangle \\
& \rightarrow G_{L} / p \Delta_{L}=\mathbb{F}_{p}[x] /\left(x^{2}-x+\frac{1-1}{\psi}\right) \underset{\tau}{\bar{\tau}} \mathbb{F}_{p}[y] /\left(y^{2}-d\right) \\
& \text { parc. } \\
& \text { Proposition 6.2.7: For any a prime } \mathfrak{r} \subset C \text { above } \mathfrak{q} \subset B \text { above } \mathfrak{p} \subset A \text { we have } \\
& \text { Pal: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { p ode. }
\end{aligned}
$$

6.3 Decomposition group

From now until $\S 6.5$ we assume in addition that L / K is galois with Galois group Γ.
Lemma 6.3.1: For any prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ and any ideal \mathfrak{a} of a ring we have

$$
\mathfrak{a} \subset \bigcup_{i=1}^{n} \mathfrak{p}_{i} \Longleftrightarrow \exists i: \mathfrak{a} \subset \mathfrak{p}_{i}
$$

$$
\begin{aligned}
& n=0: \operatorname{si} \notin \checkmark . \\
& n=1 \text { dear } \\
& n-1 \rightarrow n \geq 2 ; \text { Con mane } \forall j: \text { or } \notin L_{i \neq j} f_{i} .
\end{aligned}
$$

\rightarrow Select $\quad x_{j} \in M \backslash \underset{i \neq j}{L_{j}} \mathcal{S} i$.

$$
\text { Tin } \forall k: \quad \prod_{j \neq k}^{n_{j}} \in\left(\prod_{j \neq k} \rho_{j}\right) \backslash \rho k . \mid \Rightarrow \forall j \neq \varepsilon: q_{j} \notin \xi_{k} .
$$

$$
\begin{aligned}
& \Rightarrow \forall i: \underbrace{\sum_{j \pm i}\left\langle\prod_{j} a_{j}\right\rangle}_{E \pi} \notin g_{i} \Rightarrow p_{i} \quad \text { dome. } \\
& \Rightarrow \quad
\end{aligned}
$$

qed.

Theorem 6.3.2: (a) The group Γ acts on B and on the set of prime ideals of B.
(b) The group Γ acts transitively on the set of prime ideals $\mathfrak{q} \subset B$ above \mathfrak{p}.

$$
k \supset A>B
$$

Tale 7, 7'<compat>ᄃ<compat>, alva g.

$$
\begin{aligned}
& \Rightarrow \exists \gamma: \gamma_{y} \in 7 \text {. } \\
& \text { ide. } \quad y \in d_{i z}^{-1} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { zeal. }
\end{aligned}
$$

Definition 6.3.3: The stabilizer of \mathfrak{q} is called the decomposition group of \mathfrak{q} :

$$
\Gamma_{\mathfrak{q}}:=\left\{\gamma \in \Gamma \mid \forall x \in \mathfrak{q}:{ }^{\gamma} x \in \mathfrak{q}\right\} .
$$

Proposition 6.3.4:
(a) The numbers $e:=e_{\mathfrak{q} \mid \mathfrak{p}}$ and $f:=f_{\mathfrak{q} \mid \mathfrak{p}}$ depend only on \mathfrak{p}.
(b) We have $\mathfrak{p} B=\prod_{[\gamma] \in \Gamma / \Gamma_{q}}{ }^{\gamma} \mathfrak{q}^{e}$.
(c) We have $n=r \cdot e \cdot f$.
(d) For any $\gamma \in \Gamma$ we have $\Gamma_{\gamma_{q}}={ }^{\gamma} \Gamma_{q}$.

Ales: $r=\left[\Gamma_{4} r_{7}\right]$
$e f=\left|r_{4}\right|$

$$
\begin{aligned}
& \text { Mum: } 8^{B}=\prod_{i=1}^{i} \gamma_{i}^{e_{i}}=\prod_{47} \gamma_{4} e_{1} \\
& 4=47
\end{aligned}
$$

$$
\begin{aligned}
& n=\sum_{i=1}^{r} e_{i} f_{i}=r \cdot e_{1} \cdot f_{i}=r e f .
\end{aligned}
$$

Proposition 6.3.5:

(a) We have $\Gamma_{\mathfrak{q}}=1$ if and only if \mathfrak{p} is totally split in B.
(b) We have $\Gamma_{\mathfrak{q}}=\Gamma$ if and only if there is a unique prime $\mathfrak{q} \subset B$ above \mathfrak{p}.

$$
\text { (b) } \Gamma_{7}=r_{n=1} \Leftrightarrow g I=q^{e} \text { for } \quad \text { 多 mic. } n=e f \text {. } \text { qed. }
$$

Proposition 6.3.6: Set $L^{\prime}:=L^{\Gamma_{\mathfrak{q}}}$ and $B^{\prime}:=B \cap L^{\prime}$ and $\mathfrak{q}^{\prime}:=\mathfrak{q} \cap B^{\prime}$.
(a) Then \mathfrak{q} is the unique prime of B above \mathfrak{q}^{\prime} and $\mathfrak{q}^{\prime} B=\mathfrak{q}^{e}$.
(b) We have $e_{\mathfrak{q} \mid \mathfrak{q}^{\prime}}=e$ and $f_{\mathfrak{q} \mid \mathfrak{q}^{\prime}}=f$ and $e_{\mathfrak{q}^{\prime} \mid \mathfrak{p}}=f_{\mathfrak{q}^{\prime} \mid \mathfrak{p}}=1$.

