Reminder:

Consider a maximal ideal $\mathfrak{p} \subset A$. Then $\mathfrak{p}B$ is a non-zero ideal of B and therefore has a prime factorization

$$\mathfrak{p}B = \mathfrak{q}_1^{e_1} \cdots \mathfrak{q}_r^{e_r}$$

yic BCL

& CACK

with distinct maximal ideals $q_i \subset B$ and integral exponents $e_i \ge 1$.

Proposition 6.2.1: (a) The ideals \mathfrak{q}_i are precisely the prime ideals of B above \mathfrak{p} .

(b) For each *i* the residue field $k(q_i)$ is a finite extension of the residue field k(p).

(c) Letting f_i denote the degree of this residue field extension, we have

$$\sum_{i=1}^{r} e_i f_i = n.$$

Proposition 6.2.4: Suppose that $B = A[\beta]$ and let $f \in A[X]$ be the minimal polynomial of β above K. Set $\overline{f} := f \mod \mathfrak{p}$ and write $\overline{f} = \prod_{i=1}^{r} \overline{f_i}^{e_i}$ with inequivalent irreducible factors $\overline{f_i} \in k(\mathfrak{p})[X]$ and integral exponents $e_i \ge 1$. Choose $\overline{f_i} \in A[X]$ with $f_i = f_i \mod \mathfrak{p}$. Then $\mathfrak{p}B = \prod_{i=1}^{r} \mathfrak{q}_i^{e_i}$ with the prime ideals $\mathfrak{q}_i := \mathfrak{p}B + \overline{f_i(\beta)B}$.

Throughout the following we impose the

Assumption: The residue field $k(\mathbf{p})$ is perfect.

Example 6.2.6: Take $L = \mathbb{Q}(\sqrt{d})$ with $d \in \mathbb{Z} \setminus \{1\}$ squarefree. Then an odd prime p of \mathbb{Z} with

$$\begin{pmatrix} \frac{d}{p} \end{pmatrix} = \begin{cases} 0 & \text{is (totally) ramified in } \mathcal{O}_L, \\ 1 & \text{is (totally) decomposed in } \mathcal{O}_L, \\ -1 & \text{is (totally) inert in } \mathcal{O}_L. \end{cases}$$

$$\mathcal{H} \quad \bigcup_{l} = \mathbb{Z}[\sqrt{A}] \implies \mathbb{G}_{l} \cong \mathbb{Z}[X]/(X^{2}-A) \qquad (\begin{pmatrix} \frac{d}{p} \\ p \end{pmatrix} = \mathbb{Q} \iff p \mid d \iff p \cdot \mathbb{G}_{l} = \int_{l}^{1} \int_{l}^{2} \int_{l}^{2}$$

Proposition 6.2.7: For any a prime $\mathfrak{r} \subset C$ above $\mathfrak{q} \subset B$ above $\mathfrak{p} \subset A$ we have

6.3 Decomposition group

From now until §6.5 we assume in addition that L/K is galois with Galois group Γ .

Lemma 6.3.1: For any prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ and any ideal \mathfrak{a} of a ring we have

Theorem 6.3.2: (a) The group
$$\Gamma$$
 acts on B and on the set of prime deals of B .
(b) The group Γ acts transitively on the set of prime ideals $q \subset B$ above \mathfrak{p} .
 $\forall \mathcal{Y} \in \Gamma$
 $\forall \mathcal{Y} \in \mathcal{A}$ (b) $\forall \mathcal{P} \cap \mathcal{A} = \mathcal{P} \mathcal{P} \cap \mathcal{A}$
 $\exists \mathcal{P} \in \mathcal{A}^{\prime} : \mathcal{N} \oplus \mathcal{L}/\mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A}^{\prime} : \mathcal{N} \oplus \mathcal{L}/\mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A}^{\prime} : \mathcal{N} \oplus \mathcal{L}/\mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A}^{\prime} : \mathcal{N} \oplus \mathcal{L}/\mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A}^{\prime} : \mathcal{N} \oplus \mathcal{L}/\mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A}^{\prime} : \mathcal{N} \oplus \mathcal{L}/\mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A}^{\prime} : \mathcal{N} \oplus \mathcal{L}/\mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A}^{\prime} : \mathcal{N} \oplus \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A}^{\prime} : \mathcal{N} \oplus \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A}^{\prime} : \mathcal{N} \oplus \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A}^{\prime} : \mathcal{N} \oplus \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A}^{\prime} : \mathcal{N} \oplus \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A}^{\prime} : \mathcal{N} \oplus \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A}^{\prime} : \mathcal{N} \oplus \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A} : \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A} : \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A} : \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A} : \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A} : \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A} : \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A} : \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A} : \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A} : \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A} : \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A} : \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A} : \mathcal{A} = \mathcal{P}$.
 $\forall \mathcal{Y} \in \mathcal{A} : \mathcal{A} = \mathcal{A} = \mathcal{A}$.
 $\forall \mathcal{Y} \in \mathcal{A} : \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A}$.
 $\forall \mathcal{Y} \in \mathcal{A} : \mathcal{A} = \mathcal{A$

Definition 6.3.3: The stabilizer of q is called the *decomposition group of* q:

$$\Gamma_{\mathfrak{q}} := \{ \gamma \in \Gamma \mid \forall x \in \mathfrak{q} \colon {}^{\gamma}x \in \mathfrak{q} \}.$$

Proposition 6.3.4:

(a) The numbers
$$e := e_{q|p}$$
 and $f := f_{q|p}$ depend only on p .
(b) We have $pB = \prod_{[\gamma] \in \Gamma/\Gamma_q} {}^{\gamma} q^{e}$.
(c) We have $n = r \cdot e \cdot f$.
(d) For any $\gamma \in \Gamma$ we have $\Gamma_{\gamma q} = {}^{\gamma}\Gamma_q$.
 $M : p B = \prod_{i > i} q_i e^{i} = \prod * q^{e_i}$
 $(d) = \Gamma/\Gamma_q$
 $M = (d) = \Gamma/\Gamma_q$
 $M = \sum_{i = 1}^{i} e_i f_i = r \cdot e_i \cdot f_i = r \cdot e_i$.

$$Ae_{n}: r = [\Gamma; \Gamma_{v_{T}}]$$

$$ef = |\Gamma_{v_{T}}|.$$

Jed

Proposition 6.3.5:

- (a) We have $\Gamma_{\mathfrak{q}} = 1$ if and only if \mathfrak{p} is totally split in B.
- (b) We have $\Gamma_{\mathfrak{q}} = \Gamma$ if and only if there is a unique prime $\mathfrak{q} \subset B$ above \mathfrak{p} .

[-1 (a) [y = 1 (3) v=n (3) ; D= u1, ... up with milit 4;

$$(\forall \Gamma_{4} = \Gamma \iff g \Pi = y^{e} f n v_{1} p n c. n = ef.$$

Proposition 6.3.6: Set $L' := L^{\Gamma_{\mathfrak{q}}}$ and $B' := B \cap L'$ and $\mathfrak{q}' := \mathfrak{q} \cap B'$.

- (a) Then \mathfrak{q} is the unique prime of B above \mathfrak{q}' and $\mathfrak{q}'B = \mathfrak{q}^e$.
- (b) We have $e_{\mathfrak{q}|\mathfrak{q}'} = e$ and $f_{\mathfrak{q}|\mathfrak{q}'} = f$ and $e_{\mathfrak{q}'|\mathfrak{p}} = f_{\mathfrak{q}'|\mathfrak{p}} = 1$.