Reminder:

Consider a maximal ideal p C A. Then pB is a non-zero ideal of B and therefore has a prime factorization

pB:@@ %ZC& CL
with distinct maximal ideals q; C B and integral exponents e; > 1. l
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Proposition 6.2.1: (a) The ideals g; are precisely the prime ideals of B above p.
-

(b) For each i the residue field k(q;) is a finite extension of the residue field k(p).
(c) Lettin@enote the degree of this residue field extension, we have

r

Z eifi = n.

i=1

Proposition 6.2.4: Suppose that B = A[f] and let f € A[X] be the minimal polynomial of 5 above K.
Set f:= fmod p and write f = [[,_, f7* with inequivalent irreducible factors f; € k(p)[X] and integral
exponents ¢; = 1. Choose f; € A[X]| with f; = f; mod p. Then pB = []i_, qi" with the prime ideals

q; := pB + fi(B)B.

Throughout the following we impose the

Assumption: |The residue field k(p) is perfect.




Example 6.2.6: Take L = Q(v/d) with d € Z ~ {1} squarefree. Then an odd prime p of Z with

e

d 0 is (totally) ramified in Oy,
(—) = 1 is (totally) decomposed in Oy,
p —1 is (totally) inert in Oy,.
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Proposition 6.2.7: For any a prime v C C' above q C B above p C A we have N~ éb)
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6.3 Decomposition group

From now until §6.5 we assume in addition that L/K is galois with Galois group T'.

Lemma 6.3.1: For any prime ideals py,...,p, and any ideal a of a ring we have

ac|Jp <= Firacy

i=1

f ,“(:ﬁ Lear, ‘T~.,p“=)“ bt fone j{ Ve Lr1.¢j3l He. ¢ l,_‘).,t

=3 &y \ Ly~ ‘l""" ﬂ.



C GuUoRay
Theorem 6.3.2: (a) The group I" acts(on B)and on the set of p \;
(b) The group I" acts transitively on the set of prime jdeals q C B above p.
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Definition 6.3.3: The stabilizer of q is called the decomposition group of q:
stabilizer of q 1s calk

Iy = {7€F|Vx€q:7x€q}.

Proposition 6.3.4:
(a) The numbers e := eq, and f := fy, depend only on p. ‘

(b) We have pB = H[v]er/rq 7q°. Pl = [ . r<q_3
(¢c) We haven=r-e- f: e_il: \‘\QZl
(d) For any v € I' we have I'; = 7T,.
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Proposition 6.3.5:
(a) We have I'; = 1 if and only if p is totally split in B.

(b) We have I'y = I if and only if there is a unique prime q C B above p.
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Proposition 6.3.6: Set I/ := L'v and B':= BN L and ¢ :=qN B’
(a) Then q is the unique prime of B above ¢’ and q'B = q°.
(b) We have ey = e and fy¢ = f and eqpp = fyp, = 1.



