Reminder:

Let A be a Dedekind ring with quotient field K. Let L/K be a finite Galois extension of degree n with
Galois group I'. Let B be the integral closure of A in L. Consider a maximal ideal p C A and a prime
ideal g C B over p, and let fy, be the degree of the residue field extension k(q)/k(p).

Definition 6.3.3: The stabilizer of q is called the decomposition group of q: L/ @ Ul

:_ {yel|Vzeq:"zeq}. \L /é(

Proposition 6.3.4: : d’i

Assumption: The residue field k(p) is perfect.

(a) The numbers e = eq, and f = fy, depend only on p.
(b) We have\pB = IIjeryr, 70 " = [Y‘: P(Q«]
(c) We have @@ = l rg_-{_‘l .
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Proposition 6.3.6: Set L' := L'v and B':== BN L and q :=qN B'.
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6.4 Inertia group

Next I'y acts on the residue field k(q) := B/q by a natural homomorphism

Iy — Aut(k(q)/k(p))-

Definition 6.4.1: Its kernel is called the inertia group of q:

B
I, = {7€F|Vx€\£7xza:modq}.

Proposition 6.4.2: The extension k(q)/k(p) is finite galois and the above homomorphism induces an
isomorphism I'y/1; = Aut(k(q)/k(p)).
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6.5 Frobenius Y\cq,/l.?q» = ca( () /<G)

Keeping L/K galois with group I', we now assume that k(p) is finite. Then k(q)/k(p) is finite galois, and
its Galois group is generated by the Frobenius automorphism x s z*®),

Proposition 6.5.1: (a) There exists v € Iy that acts on k(q) through z — z/*®)l.
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b) The coset 71, is uniquely determined by gq. EEYISVNOTN , P S —
: — -

(2
LoR 9 eyl

Definition 6.5.2: Any such 7 is called a Frobenius substitution at q and denoted by Frobgj,.



T, =1
e

Proposition 6.5.3: If q is unramified over p, then in addition:

-
(a) The element Frobg, is uniquely determined by g. I
(c) The conjugacy class of Froby, in I' is uniquely determined by p. »

d) If I' is abelian, then Frob, is uniquely determined by p.
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Caution 6.5.4: Do not confuse the Frobenius substitution Frobg, € I'y with the Frobenius automorphism
x — kPl of k(q).

Example 6.5.5: Consider the cyclotomic field L := Q(u,,) for n #Z 2 mod (4).
(a) A rational prime p is ramified in Oy, if and only if p|n.

(b) For any p {1 n the Frobenius substitution at p corresponds to the residue class of p under the
isomorphism Gal(L/Q) = (Z/nZ)*.

(c) A rational prime p is totally split in O, if and only if p = 1 mod (n).

(d) If n = p¥ for a prime p, then p is totally ramified in Oy.



