For ~ = 2 (41 $\&(r_n) = \&(r_n)$. **Example 6.5.5:** Consider the cyclotomic field $L := \mathbb{Q}(\mu_n)$ for $n \not\equiv 2 \mod (4)$. \checkmark (a) A rational prime p is ramified in \mathcal{O}_L if and only if p|n. \checkmark (b) For any $p \nmid n$ the Frobenius substitution at p corresponds to the residue class of p under the isomorphism $\operatorname{Gal}(L/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$. Carepla = With n=pin \checkmark (c) A rational prime p is totally split in \mathcal{O}_L if and only if $p \equiv 1 \mod (n)$. ⇒ ₽_ (x)= TT (x4-(d) If $n = p^{\nu}$ for a prime p, then p is totally ramified in \mathcal{O}_L . to I puritie whe work of 1. $0_1 = \overline{2}[\overline{z}] = \overline{2}[\overline{z}] (\overline{a_1}(x))$ Ge(L/a) - Le/LZ)x $(\psi \neq \rho : G_{L} \neq G_{L} \neq \mathbb{F}_{p} [\mathcal{L}] / (\mathcal{J}_{n} (x))$ m (1-1) Com ptu: An X-1 = upuble on The . = all inext fully unamilie in 42. Farbined e un gate: = r. (=) = 4 di, of ale ". = I and my g < by the p has all [X "=1]" (=) (X "=1] - r (=) J mine chan of J. $V(y) = H_{y}(\overline{Z})$ =(x=1) + r(=) (x=1) + r(=) s(b), (Le) = p + n Tuch (J)=J" = (x=1) (- 1 - 1 - 1) = Tule (J) = JA $I = \frac{1}{2} \left[\left(x \right) = \left(\frac{1}{2} \left(x^{2} - 1 \right)^{n} \right)^{n} \right]^{n}$ Lo Vg | p : Eglp = p-p > 1 bern p>Z. = = (x) - + - + munified in (2) re(L/ Le/ = [P/m Z) × = (Z/m Z) × (2/m Z) × (2) (2/1 × 1

6.6 Relative norm

Now we return to the situation that L/K is finite separable of degree n.

Definition 6.6.1: The *relative norm* of a fractional ideal \mathfrak{b} of *B* is the *A*-submodule

$$\operatorname{Nm}_{L/K}(\mathfrak{b}) := \left(\left\{ \operatorname{Nm}_{L/K}(y) \mid y \in \mathfrak{b} \right\} \right) \subset K.$$

Proposition 6.6.2:

(a) This is a fractional ideal of A. (b) If $\mathfrak{b} \subset B$ then $\operatorname{Nm}_{L/K}(\mathfrak{b}) \subset \mathfrak{b} \cap A$ (c) For any $y \in L^{\times}$ we have $\operatorname{Nm}_{L/K}((y)) = (\operatorname{Nm}_{L/K}(y))$. (c) multiplications of $\operatorname{Nm}_{L/K}$. $\operatorname{Im}_{\mathfrak{f}} : \langle \mathfrak{a} \rangle \exists \mathfrak{b}_{\mathfrak{f}} \subset \mathfrak{b} \circ \mathfrak{b} \subset \mathfrak{b} \subset \mathfrak{b} \subset \mathfrak{c} \subset \mathfrak{c} \circ \mathfrak{b}$. $\forall \mathfrak{x} \in \mathfrak{b} : \operatorname{Nm}_{L/K}(\mathfrak{x}) \subset \mathfrak{A}$. $\forall \mathfrak{x} \in \mathfrak{b} : \operatorname{Nm}_{L/K}(\mathfrak{c}) \subset \operatorname{Nm}_{L/K}(\mathfrak{b}) \subset \mathfrak{c} \to \mathfrak{b}$. $\forall \mathfrak{x} \in \mathfrak{b} : \operatorname{Nm}_{L/K}(\mathfrak{c}) \subset \operatorname{Nm}_{L/K}(\mathfrak{b}) \subset \mathfrak{b} \subset \mathfrak{b}$. $\exists \mathfrak{b} = \mathfrak{b} \circ \mathfrak{b} \circ \mathfrak{b} \subset \mathfrak{b} = \mathfrak{b} \circ \mathfrak{b} \circ \mathfrak{b} \circ \mathfrak{b}$. $\mathsf{b} = \mathfrak{b} \circ \mathfrak{b$

Lemma:

- (a) For any $z \in L^{\times}$ we have $\operatorname{Nm}_{L/K}(z\mathfrak{b}) = \operatorname{Nm}_{L/K}(z) \operatorname{Nm}_{L/K}(\mathfrak{b})$.
- (b) Suppose that $\mathfrak{b} \subset B$ and take $x \in \operatorname{Nm}_{L/K}(\mathfrak{b}) \setminus \{0\}$ and $y \in \mathfrak{b}$ such that $\mathfrak{b} = (x, y)$. Then $\operatorname{Nm}_{L/K}(\mathfrak{b}) = (x, \operatorname{Nm}_{L/K}(y))$.

 $\begin{array}{c}
\left(\bigcup & """ den \\
\left(\bigcup & """ den \\
 & \left(\bigcup & """ den \\
 & \left(\bigcup & u & v \\
\end{array} \right) \\
= & \left(\bigcup & v + v \\
 & \left(\bigcup & v + v \\
\end{array} \right) \\
= & \left(\bigcup & v \\
 & \left(\bigcup & v \\
\end{array} \right) \\
= & \left(\bigcup & v \\
\end{array} \right) \\
\left(\bigcup & v \\
\end{array} \\
\left(\bigcup & v \\
\end{array} \right) \\
\left(\bigcup & v \\
\end{array} \\
\left(\bigcup & v \\
\end{array}$ \left(\bigcup & v \\
\left(\bigcup & v \\
\bigg) \\
\left(\bigcup & v \\
\bigg

 $N_{-lee}(zb) = N_{-lee}(z) \cdot N_{-lee}(b).$

Proposition 6.6.3: For any two fractional ideals b, b' of B we have

$$\frac{\mathrm{Nm}_{L/K}(bb') = \mathrm{Nm}_{L/K}(b) \cdot \mathrm{Nm}_{L/K}(b').$$

$$\frac{\mathrm{L}_{L}}{\mathrm{L}_{L}} = \left(\begin{array}{c} x_{1}^{-}, x_{2}^{-}, x_{2}^{-}, x_{2}^{-}, x_{2}^{-}, y_{2}^{-} \right) \\ x_{1} = \left(\begin{array}{c} x_{1}^{-}, x_{2}^{-}, x_{2}^{-}, y_{2}^{-} \right) \\ x_{2} = \left(\begin{array}{c} x_{1}^{-}, y_{2}^{-} \right) \\ x_{2} = \left(\begin{array}{c} x_{1}^{-} \right) \\ x_{2} = \left($$

$$\operatorname{Nm}_{L/K}(\operatorname{Nm}_{M/L}(\mathfrak{c})) = \operatorname{Nm}_{M/K}(\mathfrak{c}).$$