Reminder: Take L/K finite separable of degree n.

Definition 6.6.1: The *relative norm* of a fractional ideal \mathfrak{b} of B is the A-submodule

$$\operatorname{Nm}_{L/K}(\mathfrak{b}) := \left(\{ \operatorname{Nm}_{L/K}(y) \mid y \in \mathfrak{b} \} \right) \subseteq K.$$

Proposition 6.6.2:

- (a) This is a fractional ideal of A.
- (b) If $\mathfrak{b} \subset B$ then $\operatorname{Nm}_{L/K}(\mathfrak{b}) \subset \mathfrak{b} \cap A$.
- (c) For any $y \in L^{\times}$ we have $\operatorname{Nm}_{L/K}((y)) = (\operatorname{Nm}_{L/K}(y))$.

Lemma:

- (a) For any $z \in L^{\times}$ we have $\operatorname{Nm}_{L/K}(z\mathfrak{b}) = \operatorname{Nm}_{L/K}(z) \operatorname{Nm}_{L/K}(\mathfrak{b})$.
- (b) Suppose that $\mathfrak{b} \subset B$ and take $x \in \operatorname{Nm}_{L/K}(\mathfrak{b}) \setminus \{0\}$ and $y \in \mathfrak{b}$ such that $\mathfrak{b} = (x, y)$. Then $\operatorname{Nm}_{L/K}(\mathfrak{b}) = (x, \operatorname{Nm}_{L/K}(y))$.

Proposition 6.6.3: For any two fractional ideals $\mathfrak{b}, \mathfrak{b}'$ of B we have

 $\operatorname{Nm}_{L/K}(\mathfrak{b}\mathfrak{b}') = \operatorname{Nm}_{L/K}(\mathfrak{b}) \cdot \operatorname{Nm}_{L/K}(\mathfrak{b}').$

Proposition 6.6.4: For any fractional ideal \mathfrak{c} of C we have

$$\operatorname{Nm}_{L/K}(\operatorname{Nm}_{M/L}(\mathfrak{c})) = \operatorname{Nm}_{M/K}(\mathfrak{c}).$$

$$\zeta < \cap_{L}$$

 $\beta < L$
 $\beta < \kappa$
 $\beta < \kappa$

Exercine.

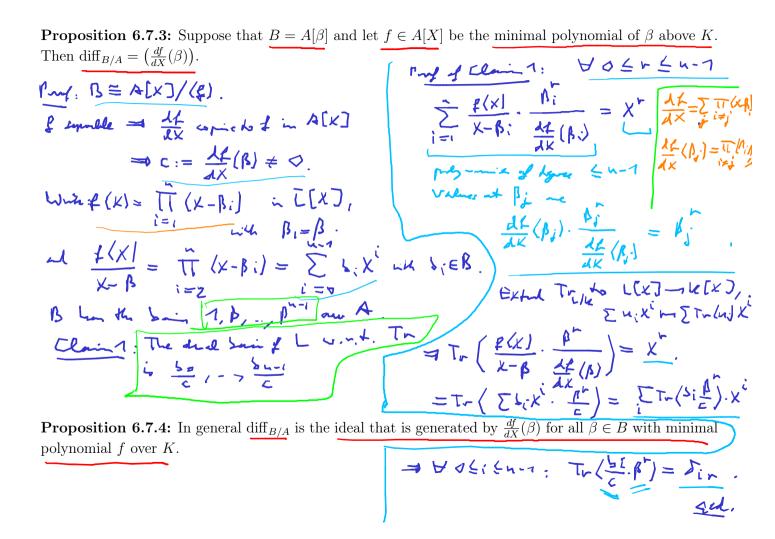
Proposition 6.6.5: For any fractional ideal \mathfrak{a} of A we have $\operatorname{Nm}_{L/K}(\mathfrak{a}B) = \mathfrak{a}^n$.

Pung: Clim xeA wh K. M cA =	No (ub) = No (14 x x or B)
MULOR: MCA. [KEMM chun xeunio] = [xehm_1/4(a)	
$\frac{1}{1} \sum_{k=1}^{\infty} \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}$	
(3) 48 = (x', y) = 6 (x' = (x')	$(7)^{2} = (x^{2}, x^{2}, y^{2}, y^{2}) = (x^{2}, y^{2})$
x" 5 4	

Proposition 6.6.6: For any prime $\mathfrak{q} \subset B$ above $\mathfrak{p} \subset A$ we have $\operatorname{Nm}_{L/K}(\mathfrak{q}) = \mathfrak{p}^{f_{\mathfrak{q}|\mathfrak{p}}}$. (Correction!)

6.7 Different

Recall from Proposition 1.7.1 that we have the non-degenerate symmetric K-bilinear form


$$L \times L \longrightarrow K$$
, $(x, y) \mapsto \operatorname{Tr}_{L/K}(xy)$.

Proposition 6.7.1: The subset

$$\mathbf{\mathfrak{d}} := \left\{ \underline{x \in L} \mid \forall y \in B \colon \operatorname{Tr}_{L/K}(xy) \in A \right\}$$

is a fractional ideal of B which contains B.

.....

$$\begin{aligned} \text{Clain 1} = \emptyset \quad \emptyset = A \cdot \frac{1}{c} \underbrace{\mathbb{E}}_{-} \quad \emptyset \quad A \cdot \frac{1}{c} \\ \Rightarrow \quad \vartheta = \frac{R}{c} \\ \text{Clain 2}_{+} \quad B = A \cdot \delta_{0} \underbrace{\mathbb{D}}_{-} \quad \bigoplus \quad A \cdot \delta_{n-1} \\ \text{Mapping Clain 2}_{+} \quad \bigcup_{k} \quad \frac{1}{p} (X) = \sum_{i=0}^{n} a_{i} X^{i} \quad \text{with } a_{i} \in A, \quad a_{n} = 1. \\ \text{Mapping Clain 2}_{+} \quad \bigcup_{k} \quad \frac{1}{p} (X) = \sum_{i=0}^{n} a_{i} X^{i} \\ \text{Mapping Clain 2}_{+} \quad \bigcup_{k} \quad \frac{1}{p} (X) = \sum_{i=0}^{n} a_{i} X^{i} \\ \text{Mapping Clain 2}_{+} \quad \bigcup_{k} \quad \frac{1}{p} (X) = \sum_{i=0}^{n} a_{i} X^{i} \\ \text{Mapping Clain 2}_{+} \quad \bigcup_{k} \quad \frac{1}{p} (X) = \sum_{i=0}^{n} a_{i} X^{i} \\ \text{Mapping Clain 2}_{+} \quad \bigcup_{k} \quad \frac{1}{p} (X) = \sum_{i=0}^{n} a_{i} X^{i} \\ \text{Mapping Clain 2}_{+} \quad \bigcup_{k} \quad \frac{1}{p} (X) = \sum_{i=0}^{n} a_{i} X^{i} \\ \text{Mapping Clain 2}_{+} \quad \bigcup_{k} \quad \frac{1}{p} (X) = \sum_{i=0}^{n} a_{i} X^{i} \\ \text{Mapping Clain 2}_{+} \quad \bigcup_{k} \quad \frac{1}{p} (X) = \sum_{i=0}^{n} a_{i} X^{i} \\ \text{Mapping Clain 2}_{+} \quad \bigcup_{k} \quad \frac{1}{p} (X) = \sum_{i=0}^{n} a_{i} X^{i} \\ \text{Mapping Clain 2}_{+} \quad \bigcup_{k} \quad \frac{1}{p} (X) = \sum_{i=0}^{n} a_{i} X^{i} \\ \text{Mapping Clain 2}_{+} \quad \cdots \\ \text{Mapping Clai$$

Proposition 6.7.5: We have $\operatorname{diff}_{C/A} = \operatorname{diff}_{C/B} \cdot \operatorname{diff}_{B/A}$.

-Kerrine

Theorem 6.7.6: For any prime \mathfrak{q} of B above a prime \mathfrak{p} of A we have $\mathfrak{q} \nmid \dim_{B/A}$ if and only if \mathfrak{q} is unramified over \mathfrak{p} . $F = \frac{1}{2} \frac{1}{2}$ Pung: 4+ diff B/A (Ailt N/A & 4 () y' ¢v Let Tx: B-D, y mxy (=) JXEM JYEB: Tr(XY) &A ~ Tx: B/3B - D/3B, [7] - [x7]. K-ein Tr (vj 2) ¢ f helg - we de ope of dimin h Claim: top us $(T_X) = top us (T_X) - ud g$. $\underline{Mu}: B \cong \bigoplus U_1; \quad ike kondidised <math>U_1 \notin A$. $\exists T_X = (q_{ij})_{ij}; \quad ike q_{ij} \in Hom_A [U_j, U_i]$ $\Rightarrow \exists x \in u_{f}^{-1} : T - (x) \neq 0 \mod g.$ $T = T + (T_{x})$ $\varphi_{i_{1}}^{-1} \in \widehat{\mu_{i_{1}}}^{-1} = A$