Reminder: Take L/K finite separable of degree n.

Proposition 6.7.1: The subset

$$\mathfrak{d} := \left\{ x \in L \mid \forall y \in \underline{B} \colon \operatorname{Tr}_{L/K}(xy) \in \underline{A} \right\}$$

is a fractional ideal of ${\cal B}$ which contains ${\cal B}.$

Definition 6.7.2: The ideal diff_{B/A} := $\mathfrak{d}^{-1} \subset B$ is called the *different of* B over A.

Theorem 6.7.6: For any prime \mathfrak{q} of B above a prime \mathfrak{p} of A we have $\mathfrak{q} \nmid \dim_{B/A}$ if and only if \mathfrak{q} is unramified over \mathfrak{p} .

6.8 Relative discriminant

(61, - 52) Sain & Lark _ dire (67, - 52)

Definition 6.8.1 The *relative discriminant of* B/A is the ideal of A that is generated by the discriminants

$$\operatorname{disc}(b_1,\ldots,b_n) = \operatorname{det}\left(\operatorname{Tr}_{L/K}(b_i b_j)\right)_{i,j=1,\ldots,n}$$

for all tuples (b_1, \ldots, b_n) in B.

Proposition 6.8.2: We have $\operatorname{disc}_{B/A} = \operatorname{Nm}_{L/K}(\operatorname{diff}_{B/A})$.

$$\frac{dix}{b_{1/2}} \left(b_{1/2} b_{1} \right) = Aix \left(T_{-} \left(b_{1} b_{1} \right) \right)_{ij}$$

$$\in A^{\times} Aix \left(T_{-} \left(c_{1} d_{-} b_{1} \right) \right)_{ij}$$

$$= A^{\times} Aix \left(T_{-} \left(c_{1} \sum_{k} \frac{c_{1} b_{k}}{b_{k}} \right) \right)_{ij}$$

$$= A^{\times} Aix \left(\sum_{k} x_{ik} \cdot T_{-} \left[c_{i} b_{k} \right] \right)_{ij}$$

$$= A^{\times} Aix \left(\sum_{k} x_{ik} \cdot T_{-} \left[c_{i} b_{k} \right] \right)_{ij}$$

$$= A^{\times} Aix \left(\times iii \right)_{ij} = A^{\times} N_{-} \left(A \right)$$

$$= A Aix \left(\times iii \right)_{ij} = A \cdot Ais \left(b_{1/2} b_{-} \right)$$

$$= A \cdot Aix \left(A B \right)$$

$$= N_{-} \left(A B \right)$$

$$= N_{-} \left(A B \right)$$

(b) At most finitely many primes of A are ramified in B.

$$\frac{1-\frac{1}{2}}{\frac{1}{2}} \left[\frac{1}{2} \right] \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \frac{1}{2} \left[\frac{1}{2} \right] \frac{1}{2} \left[\frac{1}{2} \right] \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \frac{1}{2} \left[\frac{1}{2} \right] \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \frac{1}{2} \left[\frac{1}{2$$

Theorem 6.8.5: For any number field $K \neq \mathbb{Q}$ there exists a rational prime which is ramified in \mathcal{O}_K .

$$\mathbb{P}_{\underline{\gamma}}: \mathbb{K} \neq \mathbb{Q} \implies \operatorname{div}_{\mathcal{O}_{\underline{K}}/\underline{\mathcal{C}}} = (\mathbb{A}_{\underline{K}}) \neq (1) \qquad \operatorname{Zed}$$

Example 6.8.6: Consider distinct primes $p_1 \equiv \ldots \equiv p_r \equiv 1 \mod (4)$ with $r \ge 1$. Then the extension $d := p \cdots p_n \equiv 1(\xi)$ $\Rightarrow \delta_{L} = \bigotimes_{l=1}^{k} \mathbb{P}\left[\frac{1+V_{l-1}}{2}\right]$ $\operatorname{Gre}(L/R) = : \Gamma \equiv (C_2^r) > \operatorname{Gre}(L/K)$ d = p. ho me N>D. ichigns of 4 in the (L/K) is Iyn the (L/K) = 1. = 4 minister we k