Correction:

Proposition 6.7.4: In general diff /4 is the ideal that is generated by %(ﬁ) for all g € B(With L=K(p) S

and minimal polynomial f over K.
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To prove Proposition 6.8.2 1n general use the following facts from commutative algebra:
e For any prime ideal p of a 11 e set 5= A~ p is multiplicative and the ring A, := S™'p is

called the localization of A at p.
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e For any ideal a C A the set a, := S 'a is an ideal of A,. s | e S
. . . . . =T-A
Now assume that A is Dedekind and that @ is a maximal ideal. “ . %o i, P 3 ~,5°t_\ -
I e Then A, is a principal ideal domain. 7 SNy % g; = > Icdy -

\ e For any nonzero ideals a.a” C A we have a, = a, if and only if the exponents of p in the prime
factorizations of a and a’ coincide.

Now let B be the integral closure of A in a finite separable extension L/ Quot(A).

e Then B, := S™!'B is a principal ideal domain.

e The formation of discp,4 and diff 5,4 and the relative ideal norm commutes with localization at p.
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7 Zeta functions
7.1 Riemann zeta function

Definition 7.1.1: The Riemann zeta function is defined by the series

Proposition 7.1.2: This series converges absolutely and locally uniformly for all s € C with Re(s) > 1

and defines a holomorphic function there. po
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Lemma 7.1.3: For all Re(s) > 1 we have B (4}
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Proposition 7.1.4: The function ((s) — 8%1 extends uniquely to a holomorphic function on the region

Re(s) > 0. punni 1 A ()5S0
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Remark 7.1.5: It is known that ((s) extends uniquely to a meromorphic function on C with a single

pole at s = 1. This extension is again denoted by ((s).




Throughout the following we use the branch of the logarithm with log 1 = 0.

Proposition 7.1.6: An infinite product of non-zero complex numbers [],., 2, converges to a non-zero

value if and only if hm zr, = 1 and ) log 2 converges. \9 "
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Proposition 7.1.7: For all Re(s) > 1 we have the Euler product
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Proposition 7.1.8: We have

Z P log—+0() for real s — 1+. (
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Definition 7.1.9: For x € R we denote the number of primes < z by 7(z).
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Corollary 7.1.10: There is no € > 0 such that for z — oo we have ( ’?Zy
(’h‘o{'ll)

t@) = ()

In particular there exist infinitely many primes.
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7.2 Dedekind zeta function

Fix a number field K of degree n over Q.

Definition 7.2.1: The Dedekind zeta function of K is defined by the series

FK(S) =Y Nm(a)~, ]

where the sum extends over all non-zero ideals a C Ok-.

Proposition 7.2.2: This series converges absolutely and locally uniformly for all s € C with Re(s) > 1

and defines a holomorphic function there, and we have the Fuler product
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Proposition 7.2.3: We have
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+ (holomorphic for(Re(s) > 1).
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Theorem 7.2.4: The function (x(s) extends uniquely to a meromorphic function on the region

Re(s) > 1 — £ which is holomorphic except for a pole of order 1 at s = 1.

Proposition 7.2.5: We have
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Z Nm(p)~® = log =5 + O(1) for real s — 1+.
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Corollary 7.2.6: There exist infinitely many rational primes that split totally in Ok.
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7.3 Analytic class number formula Y KNL ° KIIL — O

As before we set ¥ := Hom(K,C) and let r be the number of embeddings K — R and s the number of
pairs of complex conjugate non-real embeddings K <« C. With K¢ := C* and

Kr = {(20)s € K¢ | Vo €3t 25 = Z,}

as in §3.4 we then have
KrNR* = {(t,)s €R” |Vo € T: t; = t,}.

The R-subspace
H := ker(Tr: Kg NR* — R)

from §5.2 therefore becomes a euclidean vector space by its embedding H C Kr C K¢ and the scalar
product from §4.1. By §2.2 it is thus endowed with a canonical translation invariant measure d vol. Recall
from Theorem 5.3.1 that I' := £(j(O%)) is a complete lattice in H.

Definition 7.3.1: The regulator of K is the real number

R := vol(H/T) > 0.

Let w := |u(K)| denote the number of roots of unity in K and let h := | C1(Ok)| the class number.
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Theorem 7.2.7: Analytic class number formula: The residue of (x(s) at s =1 is

_ (@i
Ress—1 (i (s) = i ]dKU > 0.




