
Correction:

Proposition 6.7.4: In general di�B/A is the ideal that is generated by df

dX
(�) for all � � B with L = K(�)

and minimal polynomial f over K.

To prove Proposition 6.8.2 in general use the following facts from commutative algebra:

• For any prime ideal p of a ring A the set S := A � p is multiplicative and the ring Ap := S�1p is
called the localization of A at p.

• For any ideal a ⇥ A the set ap := S�1a is an ideal of Ap.

Now assume that A is Dedekind and that a is a maximal ideal.

• Then Ap is a principal ideal domain.

• For any nonzero ideals a, a⇥ ⇥ A we have ap = a⇥p if and only if the exponents of p in the prime
factorizations of a and a⇥ coincide.

Now let B be the integral closure of A in a finite separable extension L/Quot(A).

• Then Bp := S�1B is a principal ideal domain.

• The formation of discB/A and di�B/A and the relative ideal norm commutes with localization at p.



7 Zeta functions

7.1 Riemann zeta function

Definition 7.1.1: The Riemann zeta function is defined by the series

⇥(s) :=

⇤X

n=1

n�s.

Proposition 7.1.2: This series converges absolutely and locally uniformly for all s � C with Re(s) > 1

and defines a holomorphic function there.



Lemma 7.1.3: For all Re(s) > 1 we have

⇥(s) =
s

s⇤ 1
⇤ s ·

Z ⇤

1

(x⇤ ⌅x⇧)x�s�1 dx.

Proposition 7.1.4: The function ⇥(s) ⇤ 1
s�1 extends uniquely to a holomorphic function on the region

Re(s) > 0.

Remark 7.1.5: It is known that ⇥(s) extends uniquely to a meromorphic function on C with a single
pole at s = 1. This extension is again denoted by ⇥(s).



Throughout the following we use the branch of the logarithm with log 1 = 0.

Proposition 7.1.6: An infinite product of non-zero complex numbers
Q

k�1 zk converges to a non-zero
value if and only if lim

k!⇤
zk = 1 and

P
k�1

log zk converges.

Proposition 7.1.7: For all Re(s) > 1 we have the Euler product

⇥(s) =

Y

p prime

(1⇤ p�s
)
�1 ⌃= 0.



Proposition 7.1.8: We have
X

p prime

p�s
= log

1
s�1 +O(1) for real s ! 1+.

Definition 7.1.9: For x � R we denote the number of primes ⇥ x by ⇤(x).

Corollary 7.1.10: There is no ⌅ > 0 such that for x !⌥ we have

⇤(x) = O
� x

(log x)1+�

⇥
.

In particular there exist infinitely many primes.



7.2 Dedekind zeta function

Fix a number field K of degree n over Q.

Definition 7.2.1: The Dedekind zeta function of K is defined by the series

⇥K(s) :=

X

a

Nm(a)�s,

where the sum extends over all non-zero ideals a ⇥ OK .

Proposition 7.2.2: This series converges absolutely and locally uniformly for all s � C with Re(s) > 1

and defines a holomorphic function there, and we have the Euler product

⇥K(s) =

Y

p

⇤
1⇤ Nm(p)�s

⌅�1 ⌃= 0,

extended over all maximal ideals p ⇥ OK .



Proposition 7.2.3: We have

log ⇥K(s) =

X

p

Nm(p)�s
+
⇤
holomorphic for Re(s) > 1

2

⌅
.



Theorem 7.2.4: The function ⇥K(s) extends uniquely to a meromorphic function on the region
Re(s) > 1⇤ 1

n
which is holomorphic except for a pole of order 1 at s = 1.

Proposition 7.2.5: We have
X

p

Nm(p)�s
= log

1
s�1 +O(1) for real s ! 1+.

Corollary 7.2.6: There exist infinitely many rational primes that split totally in OK .



7.3 Analytic class number formula

As before we set ⇥ := Hom(K,C) and let r be the number of embeddings K ⇧! R and s the number of
pairs of complex conjugate non-real embeddings K ⇧! C. With KC := C� and

KR := {(z⇥)⇥ � KC
⇧⇧ �⌃ � ⇥ : z⇥̄ = z̄⇥}

as in §3.4 we then have
KR  R�

= {(t⇥)⇥ � R�
⇧⇧ �⌃ � ⇥ : t⇥̄ = t⇥}.

The R-subspace
H := ker

⇤
Tr: KR  R� ! R

⌅

from §5.2 therefore becomes a euclidean vector space by its embedding H ⇥ KR ⇥ KC and the scalar
product from §4.1. By §2.2 it is thus endowed with a canonical translation invariant measure d vol. Recall
from Theorem 5.3.1 that ⇤ := ⌥(j(O◊

K
)) is a complete lattice in H.

Definition 7.3.1: The regulator of K is the real number

R := vol(H/⇤) > 0.

Let w := |µ(K)| denote the number of roots of unity in K and let h := |Cl(OK)| the class number.



Theorem 7.2.7: Analytic class number formula: The residue of ⇥K(s) at s = 1 is

Ress=1 ⇥K(s) =
2
r
(2⇤)sRh

w
p
|dK |

> 0.


