Correction:

Proposition 6.7.4: In general diff_{*B/A*} is the ideal that is generated by $\frac{df}{dX}(\beta)$ for all $\beta \in B$ with $L = K(\beta)$ and minimal polynomial f over K.

To prove Proposition 6.8.2 in general use the following facts from commutative algebra: • For any prime ideal \mathfrak{p} of a pipe A the set $S := A \setminus \mathfrak{p}$ is multiplicative and the ring $A_{\mathfrak{p}} := S^{-1}\mathfrak{p}$ is called the *localization of* A at \mathfrak{p} . • For any ideal $\mathfrak{a} \subset A$ the set $\mathfrak{a}_{\mathfrak{p}} := S^{-1}\mathfrak{a}$ is an ideal of $A_{\mathfrak{p}}$. • For any ideal $\mathfrak{a} \subset A$ the set $\mathfrak{a}_{\mathfrak{p}} := S^{-1}\mathfrak{a}$ is an ideal of $A_{\mathfrak{p}}$. • For any nonzero ideals $\mathfrak{a}, \mathfrak{a}' \subset A$ we have $\mathfrak{a}_{\mathfrak{p}} = \mathfrak{a}'_{\mathfrak{p}}$ if and only if the exponents of \mathfrak{p} in the prime factorizations of \mathfrak{a} and \mathfrak{a}' coincide. Now let B be the integral closure of A in a finite separable extension $L/\operatorname{Quot}(A)$.

- Then $B_{\mathfrak{p}} := S^{-1}B$ is a principal ideal domain.
- The formation of $\operatorname{disc}_{B/A}$ and $\operatorname{diff}_{B/A}$ and the relative ideal norm commutes with localization at \mathfrak{p} .

7 Zeta functions

7.1 Riemann zeta function

Definition 7.1.1: The *Riemann zeta function* is defined by the series

$$\zeta(s) := \sum_{n=1}^{\infty} n^{-s}.$$

Proposition 7.1.2: This series converges absolutely and locally uniformly for all $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$ and defines a holomorphic function there.

$$\lim_{n \to \infty} \left| \frac{1}{4\pi} \operatorname{Re}(s) \ge 5 > 1 \quad \text{in theme} \quad \sum_{n \ge 1} \left| \frac{1}{n^{-5}} \right| = \sum_{n \ge 1} \frac{1}{n^{-Res}} \le \sum_{n \ge 1} \frac{1}{n^{-6}} < \infty$$

$$\frac{s}{s-i} = \frac{1}{s-i} + 1$$

Remark 7.1.5: It is known that $\zeta(s)$ extends uniquely to a meromorphic function on \mathbb{C} with a single pole at s = 1. This extension is again denoted by $\zeta(s)$.

Throughout the following we use the branch of the logarithm with $\log 1 = 0$.

Proposition 7.1.7: For all $\operatorname{Re}(s) > 1$ we have the *Euler product*

$$\begin{split} \zeta(s) &= \prod_{p \text{ prime}} (1 - p^{-s})^{-1} \neq 0. \\ \zeta(s) &= \prod_{p \text{ prime}} (1 - p^{-s})^{-1} \neq 0. \\ (T - p^{-s})^{-1} &= \prod_{p} \left(\sum_{\substack{\nu \geq 0 \\ \nu \geq 0}} p^{-\nu r} \right)^{-1} = \sum_{\substack{\nu \geq 1 \\ \nu \geq 0}} \langle T - p^{-r} \rangle^{-1} = \sum_{\substack{\nu \geq 0 \\ \nu \geq 0}} R_{ns} \left((1 - p^{-s})^{-1} \right) = \sum_{\substack{\nu \geq 1 \\ \nu \geq 0}} O\left(p^{-s} \right) < \infty \end{split}$$

Proposition 7.1.8: We have

$$\sum_{\substack{p \text{ prime}}} p^{-s} = \log \frac{1}{s^{-1}} + O(1) \text{ for real } s \to 1+.$$

$$\sum_{\substack{p \text{ prime}}} p^{-s} = \log \frac{1}{s^{-1}} + O(1) \text{ for real } s \to 1+.$$

$$\sum_{\substack{p \text{ prime}}} \sum_{\substack{r \text{ prime}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r \text{ prime}}} \sum_{\substack{r$$

7.2 Dedekind zeta function

Fix a number field K of degree n over \mathbb{Q} .

Definition 7.2.1: The *Dedekind zeta function of* K is defined by the series

$$\zeta_K(s) := \sum_{\mathfrak{a}} \underline{\mathrm{Nm}}(\mathfrak{a})^{-s},$$

where the sum extends over all non-zero ideals $\mathfrak{a} \subset \mathcal{O}_K$.

Proposition 7.2.2: This series converges absolutely and locally uniformly for all $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$ and defines a holomorphic function there, and we have the *Euler product*

$$\zeta_K(s) = \prod_{\mathfrak{p}} \left(1 - \operatorname{Nm}(\mathfrak{p})^{-s} \right)^{-1} \neq 0,$$

extended over all maximal ideals $\mathfrak{p} \in \mathcal{O}_{K}$. $\int \mathfrak{m} \mathfrak{f} : \mathfrak{flog} \quad \overline{\operatorname{Tr}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} - \mathfrak{p}_{\mathfrak{g}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} - \mathfrak{p}_{\mathfrak{g}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} - \mathfrak{p}_{\mathfrak{g}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} - \mathfrak{p}_{\mathfrak{g}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} - \mathfrak{p}_{\mathfrak{g}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} - \mathfrak{p}_{\mathfrak{g}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} - \mathfrak{p}_{\mathfrak{g}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} - \mathfrak{p}_{\mathfrak{g}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} - \mathfrak{p}_{\mathfrak{g}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{g} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{m} \left[\mathfrak{m} \right]^{\mathcal{I}} \right)^{-1} = \underbrace{\mathbb{C}}_{\mathcal{I}} \left(1 - \mathcal{N} \mathfrak{m} \left[\mathfrak{m} \left[$ Proposition 7.2.3: We have

$$\int \underline{\zeta}_{K}(s) = \sum_{p} \operatorname{Nm}(p)^{-s} + (\operatorname{holomorphic} \text{ for } \operatorname{Re}(s) > \frac{1}{2}).$$

$$\int \underline{\zeta}_{K}(s) = \sum_{p} \operatorname{Nm}(s)^{-s} + \sum_{p} \sum_{m \ge 2} \frac{N - (s)^{-s m}}{m}$$

$$\leq \sum_{p} n \cdot \sum_{m \ge 2} p^{-s m} = \sum_{p} \frac{n \cdot p^{-2s}}{1 - p^{-s}} \leq 2n \cdot \sum_{p} p^{-2s}$$

$$\leq J(2s)$$

$$g d.$$

Theorem 7.2.4: The function $\zeta_K(s)$ extends uniquely to a meromorphic function on the region $\operatorname{Re}(s) > 1 - \frac{1}{n}$ which is holomorphic except for a pole of order 1 at s = 1.

Proposition 7.2.5: We have

$$\sum_{\mathfrak{p}} \operatorname{Nm}(\mathfrak{p})^{-s} = \log \frac{1}{s-1} + O(1) \text{ for real } s \to 1+.$$

Corollary 7.2.6: There exist infinitely many rational primes that split totally in \mathcal{O}_K .

7.3 Analytic class number formula $\neg k_{\rm IL}^{\star} \rightarrow k_{\rm IL} \rightarrow k_{\rm IL} \rightarrow 0$

As before we set $\Sigma := \text{Hom}(K, \mathbb{C})$ and let r be the number of embeddings $K \hookrightarrow \mathbb{R}$ and s the number of pairs of complex conjugate non-real embeddings $K \hookrightarrow \mathbb{C}$. With $K_{\mathbb{C}} := \mathbb{C}^{\Sigma}$ and

$$K_{\mathbb{R}} := \{ (z_{\sigma})_{\sigma} \in K_{\mathbb{C}} \mid \forall \sigma \in \Sigma \colon z_{\bar{\sigma}} = \bar{z}_{\sigma} \}$$

as in $\S3.4$ we then have

$$K_{\mathbb{R}} \cap \mathbb{R}^{\Sigma} = \{ (t_{\sigma})_{\sigma} \in \mathbb{R}^{\Sigma} \mid \forall \sigma \in \Sigma \colon t_{\bar{\sigma}} = t_{\sigma} \}.$$

The \mathbb{R} -subspace

$$H := \ker \left(\operatorname{Tr} \colon K_{\mathbb{R}} \cap \mathbb{R}^{\Sigma} \to \mathbb{R} \right)$$

from §5.2 therefore becomes a euclidean vector space by its embedding $H \subset K_{\mathbb{R}} \subset K_{\mathbb{C}}$ and the scalar product from §4.1. By §2.2 it is thus endowed with a canonical translation invariant measure d vol. Recall from Theorem 5.3.1 that $\Gamma := \ell(j(\mathcal{O}_K^{\times}))$ is a complete lattice in H.

Definition 7.3.1: The *regulator of K* is the real number

$$R := \operatorname{vol}(H/\Gamma) > 0.$$

Let $w := |\mu(K)|$ denote the number of roots of unity in K and let $h := |\operatorname{Cl}(\mathcal{O}_K)|$ the class number.

Theorem 7.2.7: Analytic class number formula: The residue of $\zeta_K(s)$ at s = 1 is $\operatorname{Res}_{s=1} \zeta_K(s) = \underbrace{\frac{2^{\gamma}(2\pi)^{2}R_{P}}{U(\sqrt{|d_K|})}}_{U(\sqrt{|d_K|})} > 0.$