Reminder:

Fix a number field K of degree n over \mathbb{Q} .

Definition 7.2.1: The *Dedekind zeta function of* K is defined by the series

$$\zeta_K(s) := \sum_{\mathfrak{a}} \operatorname{Nm}(\mathfrak{a})^{-s},$$

where the sum extends over all non-zero ideals $\mathfrak{a} \subset \mathcal{O}_K$.

We want to prove:

Theorem 7.2.4: The function $\zeta_K(s)$ extends uniquely to a meromorphic function on the region $\operatorname{Re}(s) > 1 - \frac{1}{n}$ which is holomorphic except for a pole of order 1 at s = 1.

Theorem 7.2.7: Analytic class number formula: The residue of $\zeta_K(s)$ at s = 1 is

$$\operatorname{Res}_{s=1} \zeta_K(s) = \frac{2^r (2\pi)^s Rh}{w \sqrt{|d_K|}} > 0.$$

Here r is the number of embeddings $K \hookrightarrow \mathbb{R}$ and s the number of pairs of complex conjugate non-real embeddings $K \hookrightarrow \mathbb{C}$. Moreover $w := |\mu(K)|$ denotes the number of roots of unity in K and $h := |\operatorname{Cl}(\mathcal{O}_K)|$ the class number. The regulator of K is the real number $R := \operatorname{vol}(H/\Gamma) > 0$.

As before we set
$$\underline{\Sigma} := \operatorname{Hom}(K, \mathbb{C})$$
. With $K_{\mathbb{C}} = \mathbb{C}^{\Sigma}$ and
 $\mathbb{R}^{\mathbb{C}} \neq K_{\mathbb{R}} := \{(z_{\sigma})_{\sigma} \in K_{\mathbb{C}} \mid \forall \sigma \in \Sigma : z_{\overline{\sigma}} = \overline{z}_{\sigma}\} \stackrel{=}{=} \mathbb{K}_{\mathbb{C}} \mathbb{R}^{\mathbb{C}}$
as in §3.4 we then have
 $\underline{K}_{\mathbb{R}} \cap \mathbb{R}^{\Sigma} = \{(t_{\sigma})_{\sigma} \in \mathbb{R}^{\Sigma} \mid \forall \sigma \in \Sigma : t_{\overline{\sigma}} = t_{\sigma}\}. \stackrel{=}{=} \mathbb{R}^{\mathbb{C}} \mathbb{R}^{\mathbb{C}}$
The \mathbb{R} -subspace
 $H := \ker(\operatorname{Tr}: K_{\mathbb{R}} \cap \mathbb{R}^{\Sigma} \to \mathbb{R})$
 $Tr((t_{\overline{\sigma}})) = \sum_{\mathbb{C}} t_{\overline{\sigma}}$.

from §5.2 therefore becomes a euclidean vector space by its embedding $H \subset K_{\mathbb{R}} \subset K_{\mathbb{C}}$ and the scalar product from §4.1. By §2.2 it is thus endowed with a canonical translation invariant measure d vol. Recall from Theorem 5.3.1 that $\Gamma := \ell(j(\mathcal{O}_K^{\times}))$ is a complete lattice in H.

$$\begin{array}{c} \operatorname{Poull} \operatorname{spliture} \left(1 \right) \operatorname{J}_{\mathsf{k}} (s) = \sum_{\substack{0 \neq \sigma_{\mathsf{T}} \in \mathcal{O}_{\mathsf{k}}}} \left(N_{\mathsf{m}}(u_{\mathsf{n}}) \right)^{-s} = \sum_{\substack{i=1 \\ \substack{i=1 \\ \substack{0 \neq \sigma_{\mathsf{T}} \in \mathcal{O}_{\mathsf{k}}}}} \sum_{\substack{0 \neq \sigma_{\mathsf{T}} \in \mathcal{O}_{\mathsf{k}}}} \left(N_{\mathsf{m}}(u_{\mathsf{n}}) \right)^{-s} \\ \underset{\substack{i=1 \\ \substack{i=1 \\ \substack{0 \neq \sigma_{\mathsf{T}} \in \mathcal{O}_{\mathsf{k}}}}}{\operatorname{Im}^{-1}} \right) = \operatorname{Im}^{-s} \times \operatorname{split} \left(\operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-s} \operatorname{split} \right) \\ \underset{\substack{i=1 \\ \substack{0 \neq \sigma_{\mathsf{T}} \in \mathcal{O}_{\mathsf{T}}}}{\operatorname{Im}^{-1}} \right) = \operatorname{Im}^{-s} \times \operatorname{split}^{-1} \operatorname{Im}^{-s} \operatorname{split} \\ \underset{\substack{i=1 \\ \substack{0 \neq \sigma_{\mathsf{T}} \in \mathcal{O}_{\mathsf{T}}}}{\operatorname{Im}^{-1}} \right) = \operatorname{Im}^{-s} \times \operatorname{split}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-s} \operatorname{split}^{-1} \\ \underset{\substack{i=1 \\ \substack{0 \neq \sigma_{\mathsf{T}} \in \mathcal{O}_{\mathsf{T}}}}{\operatorname{Im}^{-1}} \right) = \operatorname{Im}^{-s} \times \operatorname{split}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \\ \underset{\substack{i=1 \\ \substack{0 \neq \sigma_{\mathsf{T}} \in \mathcal{O}_{\mathsf{T}}}}{\operatorname{Im}^{-1}} \right) = \operatorname{Im}^{-s} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \\ \underset{\substack{i=1 \\ \substack{0 \neq \sigma_{\mathsf{T}} \in \mathcal{O}_{\mathsf{T}}}}{\operatorname{Im}^{-1}} \right) = \operatorname{Im}^{-s} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \\ \underset{\substack{0 \neq \sigma_{\mathsf{T}} \in \mathcal{O}_{\mathsf{T}}}{\operatorname{Im}^{-1}} \right) = \operatorname{Im}^{-s} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \\ \underset{\substack{i=1 \\ \substack{0 \neq \sigma_{\mathsf{T}} \in \mathcal{O}_{\mathsf{T}}}}{\operatorname{Im}^{-1}} \right) = \operatorname{Im}^{-s} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \\ \underset{\substack{0 \neq \sigma_{\mathsf{T}} \in \mathcal{O}_{\mathsf{T}}}{\operatorname{Im}^{-1}} \right) = \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1}} \\ \underset{\substack{0 \neq \sigma_{\mathsf{T}} \in \mathcal{O}_{\mathsf{T}}}{\operatorname{Im}^{-1}} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \\ \underset{\substack{0 \neq \sigma_{\mathsf{T}} \in \mathcal{O}_{\mathsf{T}}}{\operatorname{Im}^{-1}} \right) = \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \operatorname{Im}^{-1} \\ \underset{\substack{0 \neq \sigma_{\mathsf{T}} \in \mathcal{O}_{\mathsf{T}}}{\operatorname{Im}^{-1}} \operatorname{Im}^{-1} \operatorname{Im}$$

$$\begin{split} & \bigvee_{n} (t, n) = t^{n} \qquad (\Rightarrow t^{n} \leq n \Leftrightarrow t \leq \sqrt{m}) \\ \Rightarrow & \bigvee_{n} (t, n) = \# \left\{ \times e(h \setminus \{o\}) / B_{k}^{K} \right\} | \bigvee_{n} (x_{1} \leq m) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \leq m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \leq m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \leq m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \leq m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \leq m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \leq m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \leq m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \leq m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \leq m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \leq m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \leq m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \leq m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \leq m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \leq m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus \{o\}) / F \right\} | (\bigvee_{n} (x_{1} \in m)) \\ &= \frac{1}{m} \cdot \# \left\{ \times e(h \setminus$$

Next ships: Estimate the man of prits in a Ballier and a conversiont.