Reminder:

Fix a number field K of degree n over \mathbb{Q} .

Definition 7.2.1: The *Dedekind zeta function of K* is defined by the series

$$\zeta_K(s) := \sum_{\mathfrak{a}} \operatorname{Nm}(\mathfrak{a})^{-s},$$

Re(v) > 7.

where the sum extends over all non-zero ideals $\mathfrak{a} \subset \mathcal{O}_K$.

We want to prove:

Theorem 7.2.4: The function $\zeta_K(s)$ extends uniquely to a meromorphic function on the region

 $\operatorname{Re}(s) > 1 - \frac{1}{n}$ which is holomorphic except for a pole of order 1 at s = 1.

Theorem 7.2.7: Analytic class number formula: The residue of $\zeta_K(s)$ at s=1 is

$$\operatorname{Res}_{s=1} \zeta_K(s) = \frac{2^r (2\pi)^s Rh}{w \sqrt{|d_K|}} > 0.$$

Here r is the number of embeddings $K \hookrightarrow \mathbb{R}$ and s the number of pairs of complex conjugate non-real embeddings $K \hookrightarrow \mathbb{C}$. Moreover $w := |\mu(K)|$ denotes the number of roots of unity in K and $h := |\operatorname{Cl}(\mathcal{O}_K)|$ the class number. The regulator of K is the real number $R := \operatorname{vol}(H/\Gamma) > 0$.

As before we set
$$\underline{\Sigma} := \operatorname{Hom}(K, \mathbb{C})$$
. With $K_{\mathbb{C}} = \mathbb{C}^{\Sigma}$ and $K_{\mathbb{R}} := \{(z_{\sigma})_{\sigma} \in K_{\mathbb{C}} \mid \forall \sigma \in \Sigma : (z_{\bar{\sigma}} = \bar{z}_{\sigma})\}$

as in $\S3.4$ we then have

$$K_{\mathbb{R}} \cap \mathbb{R}^{\Sigma} = \{(t_{\sigma})_{\sigma} \in \mathbb{R}^{\Sigma} \mid \forall \sigma \in \Sigma \colon t_{\bar{\sigma}} = t_{\sigma}\}. \quad \cong \mathbb{R}^{K+2}$$

The \mathbb{R} -subspace

$$\frac{K_{\mathbb{R}} \cap \mathbb{R}^{\Sigma}}{H := \ker(\text{Tr}: K_{\mathbb{R}} \cap \mathbb{R}^{\Sigma} \to \mathbb{R})} = \underbrace{\{(t_{\sigma})_{\sigma} \in \mathbb{R}^{\Sigma} \mid \forall \sigma \in \Sigma : t_{\bar{\sigma}} = t_{\sigma}\}.}_{\text{Tr}} \cong \mathbb{R}^{r+2}$$

from §5.2 therefore becomes a euclidean vector space by its embedding $H \subset K_{\mathbb{R}} \subset K_{\mathbb{C}}$ and the scalar product from $\S4.1$. By $\S2.2$ it is thus endowed with a canonical translation invariant measure d vol. Recall from Theorem 5.3.1 that $\Gamma := \ell(j(\mathcal{O}_K^{\times}))$ is a complete lattice in H.

Proof of Thus: (S) = [Num(m)) = [Num(m)] s [4]=[4] Let vry, on be report OL(OK) $[m] = [m_i^{-1}] \iff m = \times m_i^{-1} \text{ for some } x \in \mathbb{K}^{\times}$ $= \sum_{i=1}^{n} \left(\frac{N_m(x)}{N_m(n_i)} \right)^{-1}$ MCUK ~ XEM (10) xmi=xmi=x',x xx by Ok. Hu(xmi)= Hu(x) KEN; (SO) for hated that (Tali): = [Muls)

KC3 KR, XH (F(X))E KIRNIRE = : (IRE) + (to) [20) | 20 | 20 | 20 |) (2 H ? WIRE I := Eli(ui) | Di= [[] Xiti | VIII (0,1] Jie OK = r(K) x ?] Fulund domin to TCH (+14) M E+1 (t, s, n) h = & (a) × ; (F) + C

Nu (tru) = th cu = t & Vm. [] = d_n(m)=# xE(N(10))/0" | Nm(x) | 6 m) $= \frac{1}{m} \# \{x \in \langle \alpha_1(a) \rangle / r \mid (n - \omega_1(\leq m) \leq m \}.$ = 1. # [= (j(m) n K/R)/j(r) | Nw(z) 6 m} = 1.# { tej(n/n 12°. [()] 1 m(t) { m)} = = = # [= = j(n) n] o, ~ [] · & (I) } = 1. # (j(m) ~ X) & (X :=]o,c]. \$ (4)

Next thes: Estite he was of poils in a Pallice and a want to bet.

(6) Note: $K_c = c \cdot K_1$ (7) Example: $K_c = c \cdot K_1$	
Become: $4 \times 1 = 1 \times 1$	

De (() comput = Soudal > X < Jo, 1]. E'() = bankal.

(9) ak is hipstile promobile of dimi n-1. Becam: 20 = hite min of postopus of dia. 1+5-2. 2 millie = [(DE) = Lipsting punchitable of him. 1+25-2= n-2. → d×1=[0,1]· で(0至) し で(至).

(10) Tream; let () be a complete bellice in a endudum vecho quee V of dr. n Coo. Let KCV be a build mill maker DX is hip. purametrible of dir. n-1. The H < > 0

In [lay: Alg. Khulathay Ch. VI 52.].

11) with each
$$Si = (S_{i,0}) = E_{i}$$

Recall $S = (K_{i}, C_{i}) = E_{i}$, S_{i} , S_{i+1} , S_{i} , S_{i+1} , S_{i+1} , S_{i+1} .

The each S_{i} set S_{i} : $S_{$

 $d(\alpha \beta - x) \cdot d(\beta - x) = x \cdot d\beta \cdot dx$ =25.2" (20)5. \ d(tea) --- d(tea) + tean; d(tean) ··· FELT. Y (FEELT)

 $(13) = 2^{r} \cdot (2\pi)^{r} \cdot R \cdot \int \{ \underbrace{E_{\sigma_{res}} E_{\sigma_{res}} \} E_{\sigma_{res}} E_{\sigma_{res}} \} E_{\sigma_{res}} \underbrace{E_{\sigma_{res}} E_{\sigma_{res}} E_{\sigma_{res$ $= 2^{k} \cdot (7 = 1)^{s} \cdot k \cdot \left(\int_{0}^{1} \frac{1}{1} \int_{0}^{1} \frac{1}{$

13)
$$d_{N}(m) \stackrel{?}{=} \frac{1}{\omega} \cdot \#(3(n) \wedge \times_{N}) = \frac{1}{\omega} \cdot \#(3(n) \wedge \sqrt{N} \cdot \times_{N})$$

$$= \frac{1}{\omega} \cdot \left(\frac{nd(X_{1})}{nd(x_{1}, |x_{1}|)} \cdot |x_{1}|\right) + O(\sqrt{N} \cdot x_{1})$$

$$= \frac{1}{\omega} \cdot \frac{2^{n}(2\pi) \cdot R}{N_{m} \ln |x_{1}|} \cdot \frac{1}{N_{m}} = \sum_{N} \#(x_{1} \cdot x_{1}) \cdot \frac{1}{N_{m}} \cdot \frac{$$

$$= \frac{\left[\left(\lambda n(m) - d_{N}(m-1)\right) m^{-1}}{m^{2}}$$

$$= \frac{\sum_{m\geq 1} \lambda_{m}(m) \cdot \left(\frac{-r_{-}(m+1)^{-1}}{m^{-1}}\right)}{m^{2}}$$

$$= \frac{\sum_{m\geq 1} \left[c_{N} \cdot m + O(m^{-\frac{1}{2}})\right] \cdot \int_{0}^{\infty} S \cdot x^{-r_{-}} dx}{m^{-1}}$$

$$= \frac{\sum_{m\geq 1} \left[c_{N} \cdot l_{x} + D(x^{-\frac{1}{2}})\right] \cdot \int_{0}^{\infty} S \cdot x^{-r_{-}} dx}{m^{-1}}$$

$$= \frac{\sum_{m\geq 1} \left[c_{N} \cdot l_{x} + D(x^{-\frac{1}{2}})\right] \cdot \int_{0}^{\infty} S \cdot x^{-r_{-}} dx}{m^{-1}}$$

$$= C_{11} \cdot \frac{s \cdot x}{1 - s} \Big|_{1} + O\left(\frac{s \cdot x}{1 - s - \frac{5}{1}}\right)\Big|_{1}$$

$$= C_{11} \cdot \frac{s}{1 - s} + O\left(\frac{s \cdot x}{1 - s - \frac{5}{1}}\right)\Big|_{1}$$

$$= C_{11} \cdot \frac{s}{1 - s} + O\left(\frac{s \cdot x}{1 - s - \frac{5}{1}}\right)\Big|_{1}$$

(21) Lo Tulv = [4. 1-1 + (Indompie on Relo) > 1-1)

= [(< a. x + DETE D(21-2)) 5x - 1 dx

 $= \mathcal{L}^{n} \cdot \underbrace{\int_{1}^{1} 2x^{2} dx}_{1} + O\left(\underbrace{\int_{1}^{1} 2x^{2} - \frac{1}{2}}_{1} dx\right)$

= \frac{1}{2} \left(\mathread \left(\mathread \right) \frac{\cdot \cdot \cdo

wennight extrini.

$$\frac{13}{L_3} \ln_{s=1} \left[T_k(s) \right] = \sum_{i=1}^{h} N_m(n_i) \cdot E_{n_i} = \sum_{i=1}^{h} N_m(n_i) \cdot \frac{2^h \cdot (k\pi)^s \cdot R}{v \cdot N_m(n_i) \cdot \sqrt{|A_k|}} \right]$$

$$= \underbrace{\frac{2^h \cdot (2\pi)' \cdot R \cdot L}{v \cdot \sqrt{|A_k|}}}$$

$$= \underbrace{\frac{2^h \cdot (2\pi)' \cdot R \cdot L}{v \cdot \sqrt{|A_k|}}}$$

$$= \underbrace{\frac{2^h \cdot (2\pi)' \cdot R \cdot L}{v \cdot \sqrt{|A_k|}}}$$