Reminder:

Consider a number field K and a subset A of the set P of maximal ideals of \mathcal{O}_{K}.

Proposition 7.2.5: We have

$$
\sum_{\mathfrak{p} \in P} \mathrm{Nm}(\mathfrak{p})^{-s}=\log \frac{1}{s-1}+O(1) \text { for real } s \rightarrow 1+.
$$

Definition 7.4.1: The Dirichlet density of A, if it exists, is the value

$$
\mu(A):=\lim _{s \rightarrow 1+} \frac{\sum_{\mathfrak{p} \in A} \operatorname{Nm}(\mathfrak{p})^{-s}}{\sum_{\mathfrak{p} \in P} \operatorname{Nm}(\mathfrak{p})^{-s}}
$$

Similarly the upper Dirichlet density $\bar{\mu}(A):=\lim$ sup... and the lower Dirichlet density $\underline{\mu}(A):=\lim \inf \ldots$

Proposition 7.4.2: (a) We have $0 \leqslant \underline{\mu}(A) \leqslant \bar{\mu}(A) \leqslant 1$.
(b) For any subset $B \subset A$ we have $\bar{\mu}(B) \leqslant \bar{\mu}(A)$ and $\underline{\mu}(B) \leqslant \underline{\mu}(A)$, and also $\mu(B) \leqslant \mu(A)$ if these exist.
(c) We have $\mu(A)=0$ if A is finite.
(d) We have $\mu(A)=1$ if $P \backslash A$ is finite.
(e) For any disjoint subsets $\underline{A, B} \subset P$, if two of $\mu(A), \mu(B), \mu(A \cup B)$ exist, then so does the third and we have $\mu(A)+\mu(B)=\overrightarrow{\mu(A \cup B)}$.
7.5 Primes of absolute degree 1

$$
=\left[h(f) / \mathbb{F}_{p}\right]
$$

Definition 7.5.1: The absolute degree of a prime \mathfrak{p} of \mathcal{O}_{K} is the degree of $k(\mathfrak{p})$ over its prime field.
Proposition 7.5.2: The set of primes of absolute degree 1 has Dirichlet density 1.
Eminent:

$$
\begin{aligned}
& \left.\Rightarrow \sum_{j \in p} N m \mid g\right)^{-s} \leq \sum_{p=a-1 \ell} \sum_{g \mid p}\left\langle p^{2}\right\rangle^{-s} \leqslant n \cdot \sum_{p} p^{-2 r} \leqslant n \cdot J\left\langle Z_{s}\right\rangle=\Delta\langle 1\rangle \text { men } s=1 \text {. } \\
& \Rightarrow \operatorname{shn}=D . \text { ged. }
\end{aligned}
$$

Proposition 7.5.3: A subset $A \subset P$ has a Dirichlet density if and only if the set of all $\mathfrak{p} \in A$ of absolute degree 1 has a Dirichlet density, and then they are equal.

$$
\Rightarrow \quad r\langle A\rangle=r\left\langle A_{2}\right\rangle . \quad \text { 先d }
$$

For any finite galois extension of number fields L / K we let Split ${ }_{L / K}$ denote the set of primes $\mathfrak{p} \subset \mathcal{O}_{K}$ that are totally split in \mathcal{O}_{L}.

Proposition 7.5.4: Split $_{L / K}$ has Dirichlet density $\frac{1}{[L / K]}$. In particular it is infinite.
Prof: $\forall f=E_{k}:[L / K]=r_{f} \cdot e_{g} \cdot f_{f}$

$$
g<S_{\text {rent }}^{\text {L/k }} \text { } \Leftrightarrow c_{g}=f_{g}=1 . \Leftrightarrow r_{j}=[L / k]
$$

Now consider two finite galois extensions of number fields $L, L^{\prime} / K$.
Proposition 7.5.5: Then Split $_{L L^{\prime} / K}=$ Split $_{L / K} \cap$ Split $_{L^{\prime} / K}$.

$$
f \leftarrow \operatorname{sen} u \cos \Leftrightarrow \tilde{r}_{n}=1
$$

$$
\Leftrightarrow r_{7}=r_{r_{7}^{\prime}}^{\prime}=1
$$

Proposition 7.5.6: The following are equivalent:
(a) $L \subset L^{\prime}$.
(b) $\operatorname{Split}_{L^{\prime} / K} \subset \operatorname{Split}_{L / K}$.
(c) $\left.\widehat{\bar{\mu}\left(\operatorname{Split}_{L^{\prime} / K} \backslash \operatorname{Split}_{L / K}\right.}\right)<\frac{1}{2\left[L^{\varphi} / K\right]}$.

$$
\begin{aligned}
& \text { (b) } \rightarrow\langle<\rfloor
\end{aligned}
$$

$$
\begin{aligned}
& \text { Proposition 7.5.7: The following are equivalent: }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
=\mu\left\langle\operatorname{sinh~L~}^{\prime} k\right\rangle-\mu\left\langle\int_{\mu} L^{\prime}+L^{\prime} / k\right\rangle & =\frac{1}{\left[L^{\prime} k\right]}-\frac{1}{\left[L L^{\prime} / k\right]} \\
& \geq \frac{1}{2\left[L^{\prime} / k\right]} \cdot \underline{1 N}
\end{aligned}
\end{aligned}
$$

(a) $L=L^{\prime}$.
(b) Split $_{L^{\prime} / K}$ and Split ${ }_{L / K}$ differ only by a set of Dirichlet density 0 .

And: Ants 7.5.6 thrice.

In particular, a number field K that is galois over \mathbb{Q} is uniquely determined by the set of rational primes p that split totally in K.

7.6 Dirichlet L-series

Definition 7.6.1: (a) A homomorphism $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$is called a Dirichlet character of modulus $N \geqslant 1$.
(b) The conductor of such χ is the smallest divisor $N^{\prime} \mid N$ such that χ factors through a homomorphism $\left(\mathbb{Z} / N^{\prime} \mathbb{Z}\right)^{\times} \rightarrow \mathbb{C}^{\times} . \quad N^{\prime} \mid N \Rightarrow(\mathbb{Q} / N \mathbb{\Delta})^{x} \rightarrow\left(\mathbb{R} / N^{\prime} \mathbb{Z}\right)^{x}$
(c) Such χ is called primitive if $N^{\prime}=N$.
(d) Such χ is called principal if $N^{\prime}=1$, that is, if χ is the trivial homomorphism.

Convention 7.6.2: Often one identifies a Dirichlet character χ of modulus N with a function $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ by setting

$$
\chi(a):= \begin{cases}\frac{\chi(a \bmod (N))}{0} & \frac{\text { if } \operatorname{gcd}(a, N)=1}{\text { otherwise }}\end{cases}
$$

Caution 7.6.3: When the conductor N^{\prime} is smaller than the modulus N, one has to be somewhat careful with the divisors of N / N^{\prime}.

Example: For any prime p the Legendre symbol defines a Dirichlet character $a \mapsto\left(\frac{a}{p}\right)$ of modulus p.

$$
\left|\frac{a}{p}\right|=\left\{\begin{array}{ll}
0 & \text { if } p l a \\
1 & \text { if } p+a \\
-1 & \text { che }
\end{array} \text { ad a rymarumed } p\right.
$$

Definition 7.6.4: The Dirichlet L-function associated to any Dirichlet character χ is

$$
L(\chi, s):=\sum_{n \geqslant 1} \chi(n) n^{-s} .
$$

Proposition 7.6.5: This series converges absolutely and locally uniformly for all $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$ and defines a holomorphic function there.
Pant: $\forall n:|x(n)| \leqslant 1 . \Rightarrow$ doniakds, $y \mid R_{<}-1=\sum_{n \geq 1} n^{-(k e(s)} . \quad$ end.

Proposition 7.6.6: For all $\operatorname{Re}(s)>1$ we have the Euler product

$$
\begin{aligned}
& L(\chi, s)=\prod_{p \nmid N}\left(1-\chi(p) p^{-s}\right)^{-1} .
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n \geq 1} x(n) \cdot n^{-5} \text {. Lat } N \rightarrow \infty \text {. } \\
& \langle n, N\rangle=1 \\
& \text { are michan } \leqslant \pi \text {. }
\end{aligned}
$$

$$
\langle\mathbb{Z} / N \mathbb{I}\rangle^{x} \Longrightarrow\left\langle 巴 / n^{\prime} \mathbb{巴}\right\rfloor \frac{x^{\prime}}{x} *^{x}
$$

Proposition 7.6.7: If a Dirichlet character χ of modulus N corresponds to a primitive Dirichlet character χ^{\prime} of modulus N^{\prime}, then

$$
L\left(\chi^{\prime}, s\right)=L(\chi, s) \cdot \prod_{p \mid N, p \nmid N^{\prime}}(1-p)^{2} T^{1} \cdot \chi^{\prime}(\mu) \cdot p^{\prime} \rho^{-1}
$$

Punt: For $r \mid N, \mu^{\prime}+N^{\prime}:$
qed.
Proposition 7.6.8: (a) For the principal Dirichlet character χ of modulus 1 we have $L(\chi, s)=\zeta(s)$.
(b) For every non-principal Dirichlet character χ the function $L(\chi, s)$ extends uniquely to a holomorphic function on the region $\operatorname{Re}(s)>0$.

Prus $\left\{\left.\begin{array}{l}\infty \\ \infty\end{array} \right\rvert\, x, 5\right)=\sum_{n \geq 1} x(n) n^{-5}=\sum_{n \geq 1} x(n) \cdot \int_{n}^{\infty} 5 \cdot x^{-5-1} \cdot d x$

$$
=\int_{1}^{\infty}\left\langle\sum_{n \leq n \leq x} x(n)\right\rangle \cdot 5 \cdot x^{-1-1} d x .
$$

 $x: \Gamma \rightarrow \Gamma^{x}$ monkil hon \Rightarrow

$$
\sum x|x|=0
$$

$$
\text { If } x \neq 1 \text { k } \forall k: \sum_{k<n \leq k+N} x(n)=\sum_{k=1}^{N} x(n)=\sum_{a \in(\mathbb{Z} / N D)^{x}} x(x)=0
$$

$\sum_{d \in \Gamma} x(w)=\sum x|\gamma d\rangle$ $\xrightarrow[r]{r} \quad+\quad r \leqslant r$ $=\underbrace{=\sum_{x<r} x(x)}_{\|} \cdot \underbrace{x\langle\Delta\rangle}$

