Reminder:

Consider a number field K and a subset A of the set P of maximal ideals of \mathcal{O}_K .

Proposition 7.2.5: We have

$$\sum_{\mathfrak{p}\in P} \operatorname{Nm}(\mathfrak{p})^{-s} = \boxed{\log \frac{1}{s-1} + O(1)} \text{ for real } s \to 1+.$$

Definition 7.4.1: The *Dirichlet density of A*, if it exists, is the value

$$\mu(A) := \lim_{s \to 1+} \frac{\sum_{\mathfrak{p} \in A} \operatorname{Nm}(\mathfrak{p})^{-s}}{\sum_{\mathfrak{p} \in P} \operatorname{Nm}(\mathfrak{p})^{-s}}.$$

Similarly the upper Dirichlet density $\overline{\mu}(A) := \limsup$ and the lower Dirichlet density $\mu(A) := \liminf$...

Proposition 7.4.2: (a) We have $0 \leq \underline{\mu}(A) \leq \overline{\mu}(A) \leq 1$.

- (b) For any subset $B \subset A$ we have $\overline{\mu}(B) \leq \overline{\mu}(A)$ and $\underline{\mu}(B) \leq \underline{\mu}(A)$, and also $\mu(B) \leq \mu(A)$ if these exist.
- (c) We have $\mu(A) = 0$ if A is finite.
- (d) We have $\mu(A) = 1$ if $P \smallsetminus A$ is finite.
- (e) For any disjoint subsets $\underline{A, B} \subset P$, if two of $\mu(A), \mu(B), \mu(A \cup B)$ exist, then so does the third and we have $\mu(A) + \mu(B) = \mu(A \cup B)$.

7.5 Primes of absolute degree 1

Definition 7.5.1: The *absolute degree* of a prime \mathfrak{p} of \mathcal{O}_K is the degree of $k(\mathfrak{p})$ over its prime field.

Proposition 7.5.2: The set of primes of absolute degree 1 has Dirichlet density 1.

$$\begin{array}{c} & \mbox{Eprimehrt} : & \mbox{''} & \mbox{''} & \mbox{Pinel} & \mbox{''} & \mbox{Pinel} & \mbox{''} & \mbox{Pinel} & \m$$

 $= \left(\frac{1}{3} \right) / H_{p}$

Proposition 7.5.3: A subset $A \subset P$ has a Dirichlet density if and only if the set of all $\mathfrak{p} \in A$ of absolute degree 1 has a Dirichlet density, and then they are equal.

$$\frac{\Gamma_{mf}}{\Gamma_{mf}} = \left\{ \varphi \in A \left(A_{1}, A_{2} \right) \right\} = 0$$

$$\Rightarrow r \left(A \right) = r \left(A_{1} \right), \quad M_{2}$$

For any finite galois extension of number fields L/K we let $\text{Split}_{L/K}$ denote the set of primes $\mathfrak{p} \subset \mathcal{O}_K$ that are totally split in \mathcal{O}_L . **Proposition 7.5.4:** Split_{L/K} has Dirichlet density $\frac{1}{[L/K]}$. In particular it is infinite. Pry. Age BK . [LIK] = g.eg. Pr $g \in Spect Like (=) e_g = f_g = 1. (=) r_g = [L/k]$ $\widetilde{S} := \widetilde{S} \cdot 4 \subset \mathcal{B}_L | r_g|g \in Spect Like \widetilde{S} = privides [L/k] and if an any f <math>\in Spect L/k.$ => V vq < 6 L: vq & S (=) [eg > 1 mog vanikist in b_ = kinikaly may !] There do not [fg > 1 mog vanikist in b_ = kinikaly may !] Contrade to the [fg > 1 mog vq har shalle degree = lg > 1.] Dudikit derivity $\Rightarrow r\left(\left\{v_{1} < b_{1} \mid v_{1} \notin \tilde{s}\right\}\right) = 0, \Rightarrow r\left(\tilde{s}\right) = 1, \qquad \sum_{i=1}^{N} b_{in}\left(v_{1}\right)^{-s}$ $\Rightarrow r\left(\left\{v_{1} < b_{1} \mid v_{1} \notin \tilde{s}\right\}\right) = 0, \qquad \Rightarrow r\left(\tilde{s}\right) = 1, \qquad \sum_{i=1}^{N} b_{in}\left(v_{1}\right)^{-s}$ $\Rightarrow r\left(\left\{v_{1} < b_{1} \mid v_{1} \notin \tilde{s}\right\}\right) = 0, \qquad \Rightarrow r\left(\tilde{s}\right) = 1, \qquad \sum_{i=1}^{N} b_{in}\left(v_{1}\right)^{-s}$ $\Rightarrow r\left(\left\{v_{1} < b_{1} \mid v_{1} \notin \tilde{s}\right\}\right) = 0, \qquad \Rightarrow r\left(\tilde{s}\right) = 1, \qquad \sum_{i=1}^{N} b_{in}\left(v_{1}\right)^{-s}$ $\Rightarrow r\left(\left\{v_{1} < b_{1} \mid v_{1} \notin \tilde{s}\right\}\right) = 0, \qquad \Rightarrow r\left(\tilde{s}\right) = 1, \qquad \sum_{i=1}^{N} b_{in}\left(v_{1}\right)^{-s}$ $= \frac{1}{c_{1}}\left(v_{1} \mid v_{1} \notin \tilde{s}\right) = \frac{1}{c_{1}}\left(v_{1} \mid v_{1} \notin \tilde{s}\right)$ $= \frac{1}{c_{1}}\left(v_{1} \mid v_{1} \notin \tilde{s}\right)$ $= \frac{1}{c_{1}}\left(v_{1} \mid v_{1} \notin \tilde{s}\right)$ Now consider two finite galois extensions of number fields L, L'/K. 11 **Proposition 7.5.5:** Then $\text{Split}_{LL'/K} = \text{Split}_{L/K} \cap \text{Split}_{L'/K}$. $\frac{\Gamma_{med}}{\Gamma'_{i}} = \frac{\Gamma_{med}}{\Gamma'_{i}} = \frac{\Gamma_{med}}{\Gamma'_{i}} = \frac{\Gamma_{med}}{\Gamma'_{i}} = \frac{\Gamma_{med}}{\Gamma'_{i}}$ g esperall'/k (=) Fig = 1. (ヨ 「ニートニ・ニー

(=) & E Splik /k ~ Speik L'/k.

Mul: Apply 7. J. 6 trice

Proposition 7.5.6: The following are equivalent:

- (a) $L \subset L'$.
- (b) $\operatorname{Split}_{L'/K} \subset \operatorname{Split}_{L/K}$.
- (c) $\overline{\mu}(\operatorname{Split}_{L'/K} \smallsetminus \operatorname{Split}_{L/K}) < \frac{1}{2[L'/K]}$.
- $\int u f : (n) = (k) \quad Lel' = (l' = l' = f \quad Speck l$ = pr (Jreis L'/12 / Jusis LL'/12) $= \mu \left(\int_{\mu} L_{\mu} \left(\int_{\mu} L_{\mu} \right) - \mu \left(\int_{\mu} L_{\mu} \left(L_{\mu} \right) \right) = \frac{1}{\left[L_{\mu}^{\prime} \right] \left[\int_{\mu} L_{\mu}^{\prime} \left(L_{\mu}^{\prime} \right) \right]}$

Proposition 7.5.7: The following are equivalent:

- (a) L = L'.
- (b) $\operatorname{Split}_{L'/K}$ and $\operatorname{Split}_{L/K}$ differ only by a set of Dirichlet density 0.

In particular, a number field K that is galois over \mathbb{Q} is uniquely determined by the set of rational primes p that split totally in K.

Dirichlet *L*-series 7.6

- **Definition 7.6.1:** (a) A homomorphism $\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ is called a *Dirichlet character of modulus* $N \ge 1.$
 - (b) The *conductor* of such χ is the smallest divisor N'|N such that χ factors through a homomorphism (c) Such χ is called <u>primitive</u> if $\underline{N'} = N$. N'IN = / R/NT/X ->> R/N'R X

(d) Such χ is called *principal* if N' = 1, that is, if χ is the trivial homomorphism.

Convention 7.6.2: Often one identifies a Dirichlet character χ of modulus N with a function $\chi: \mathbb{Z} \to \mathbb{C}$ by setting

$$\chi(a) := \begin{cases} \frac{\chi(a \mod (N))}{0} & \frac{\text{if } \gcd(a, N) = 1}{\text{otherwise.}} \end{cases}$$

Caution 7.6.3: When the conductor N' is smaller than the modulus N, one has to be somewhat careful with the divisors of N/N'.

Example: For any prime p the Legendre symbol defines a Dirichlet character $a \mapsto \left(\frac{a}{p}\right)$ of modulus p.

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } p \mid a \\ 7 & \text{if } p \neq a \end{pmatrix} a - grave mod p$$

Definition 7.6.4: The *Dirichlet L-function* associated to any Dirichlet character χ is

$$L(\chi,s) := \sum_{n \ge 1} \chi(n) n^{-s}.$$

Proposition 7.6.5: This series converges absolutely and locally uniformly for all $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$ and defines a holomorphic function there.

Proposition 7.6.6: For all $\operatorname{Re}(s) > 1$ we have the *Euler product*

$$L(\chi, s) = \prod_{p \nmid N} (1 - \chi(p)p^{-s})^{-1}.$$

$$L(\chi, s) = \prod_{p \nmid N} (1 - \chi(p)p^{-s})^{-1}.$$

$$p \leq n$$

$$p \leq n$$

$$p \leq n$$

$$r \leq n$$

(Z/NZ) ~ ~ (Z/~ 2) ~

Proposition 7.6.7: If a Dirichlet character χ of modulus N corresponds to a primitive Dirichlet character χ' of modulus N', then

$$L(\chi',s) = L(\chi,s) \cdot \prod_{p|N,p \nmid N'} (1 - \chi'(p) \cdot p')$$

$$P_{M'} : \mp p|N,p^{1} + N' : \chi(p|=4)$$

$$\chi'(p|\neq 0] = E \cdot F_{m} \int_{-\infty}^{\infty} \left[\frac{\# L(\chi,r)}{\# L(\chi',r)} \right] : (1 - \chi'(p) \cdot p')^{-1}$$

Proposition 7.6.8: (a) For the principal Dirichlet character χ of modulus 1 we have $L(\chi, s) = \zeta(s)$.

(b) For every non-principal Dirichlet character χ the function $L(\chi, s)$ extends uniquely to a holomorphic function on the region $\operatorname{Re}(s) > 0$.