K/Q gening with songe (C/NZ) ×

Theorem 7.6.9: The zeta function $\zeta_K(s)$ of the field $K := \mathbb{Q}(\mu_N)$ is the product of the L-functions $L(\chi, s)$ for all primitive Dirichlet characters χ of conductor dividing N. Q(N) = VIRE FR $\frac{P_{\text{word}}}{F_{\text{K}}(s)} = \prod_{\substack{n \in G_{\text{K}}}} (n - N_{n} \langle p \rangle^{s} \rangle^{-1} = \prod_{\substack{n \in G_{\text{K}}}} (\prod_{\substack{n \in G_{\text{K}}}} (n - N_{n} \langle p \rangle^{s})^{-1})$ ep=165 p. and them (1-(ph)) TT (1-7 p-5) A $p \downarrow N \Rightarrow \prod (1 - \chi(p)) \bar{p}$ = ĭ∈ M PIN=0 some for N' inhiel of N N=pE.N' will pt N'. at fr [p] each occurs Q(rn) a(rui) ł $e_n = 1 \implies \varphi(N) = r_0 \cdot f_n$

Theorem 7.6.10: For any non-principal Dirichlet character χ we have $L(\chi, 1) \neq 0$.

Proposition 7.6.11: For any non-principal Dirichlet character χ we have

$$\sum_{\substack{p \text{ prime}}} \chi(p)p^{-s} \neq O(1) \text{ for real } s \to 1+.$$

$$\sum_{\substack{p \text{ prime}}} \chi(p)p^{-s} = O(1) \text{ for real } s \to 1+.$$

$$\sum_{\substack{p \text{ prime}}} \chi(p)p^{-s} = \sum_{\substack{p \text{ b} \geq n}} \frac{\chi(p)}{p} \sum_{\substack{p \text{ b} \geq n}} \frac{\chi(p)}{p}$$

7.7 Primes in arithmetic progressions

Theorem 7.7.1: For any coprime integers a and $N \ge 1$ the set of rational primes $p \equiv a \mod (N)$ has Dirichlet density $\frac{1}{\varphi(N)}$. In particular it is infinite. $\sum_{\substack{p \in S_{a} \\ p \neq (N)}} p^{-s} = \sum_{\substack{p \neq N \\ X}} \frac{1}{p(N)} \cdot \sum_{\substack{x \neq N \\ X}} \chi(a) \cdot \chi(p) \cdot \frac{1}{p} =$ $= \frac{1}{p(N)} \cdot \sum_{\substack{x \neq N \\ X}} \chi(a) \cdot \sum_{\substack{p \neq N \\ Y}} \chi(p) \cdot \frac{1}{p} = \{0(1) \text{ if } \chi \neq 1 \\ (L_{2}(\frac{1}{p-1}) + 0(1) \text{ if } \chi = 1\}$