Recall:

Theorem 7.7.1: For any coprime integers a and $N \ge 1$ the set of rational primes $p \equiv a \mod (N)$ has Dirichlet density $\frac{1}{\varphi(N)}$. In particular it is infinite.

$$\sum_{k=1}^{\infty} \frac{\int dk}{\partial x} = \frac{\int dk}{\partial x} \frac{\int dk}{\partial x} = \frac{\int dk}{\partial x} \frac{\int dk}{\partial x}$$

7.8 Bonus Material: Abelian Artin *L*-functions

Consider an abelian extension of number fields L/K with Galois group Γ . Then for any prime \mathfrak{q} of \mathcal{O}_L , the decomposition group $\Gamma_{\mathfrak{q}}$, the inertia group $I_{\mathfrak{q}}$, and the Frobenius substitution Frob_{\mathfrak{q}} depend only on the underlying prime \mathfrak{p} of \mathcal{O}_K . We therefore denote them also by $\Gamma_{\mathfrak{p}}$, $I_{\mathfrak{p}}$, Frob_{\mathfrak{p}} respectively.

Definition 7.8.1: The *Artin L-function* associated to any homomorphism $\chi: \Gamma \to \mathbb{C}^{\times}$ is

$$L_K(\chi, s) := \prod_{\substack{\mathfrak{p} \\ \chi \mid I_{\mathfrak{p}}=1}} \left(1 - \chi(\operatorname{Frob}_{\mathfrak{p}}) \operatorname{Nm}(\mathfrak{p})^{-s}\right)^{-1}.$$

Example 7.8.2: In the case $K = \mathbb{Q}$ and $L = \mathbb{Q}(\mu_N)$ and the usual identification $\Gamma \cong (\mathbb{Z}/N\mathbb{Z})^{\times}$ the Artin *L*-function $L_K(\chi, s)$ is the Dirichlet *L*-function $L(\chi, s)$ for the primitive Dirichlet character associated to χ .

Proposition 7.8.3: This product converges absolutely and locally uniformly for all $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$ and defines a holomorphic function there.

Proposition 7.8.4: For the trivial homomorphism χ we have $L_K(\chi, s) = \zeta_K(s)$.

Proposition 7.8.5: The zeta function $\zeta_L(s)$ is the product of the *L*-functions $L_K(\chi, s)$ for all χ .

7.9 Bonus Material: Cebotarev density theorem

Consider an arbitrary Galois extension of number fields L/K with Galois group Γ . For any $\gamma \in \Gamma$ we denote the conjugacy class by $O_{\Gamma}(\gamma) := \{\delta \gamma \mid \delta \in \Gamma\}$ and let P_{γ} denote the set of primes $\mathfrak{p} \subset \mathcal{O}_K$ that are unramified in \mathcal{O}_L and whose Frobenius substitution for some (and equivalently every) $\mathfrak{q}|\mathfrak{p}$ lies in $\mathcal{O}_{\Gamma}(\gamma)$.

Theorem 7.9.1: The set P_{γ} has the Dirichlet density $\frac{|O_{\Gamma}(\gamma)|}{|\Gamma|}$.

Steps in the proof of Theorem 7.9.1: Let $C(L/K, \gamma)$ denote the statement of 7.9.1. $(\mathcal{K}) \bullet$ If $C(L/L^{\langle \gamma \rangle}, \gamma)$ holds, then so does $C(L/K, \gamma)$. $P_{und}: I_{und} \otimes_{f} := \sup CO_{L} \left(\underbrace{\operatorname{manufil}}_{Filom} \otimes_{f} := u_{1} \wedge b_{ik} \right)$ $= P_{d}: = \left\{ u_{1} \wedge b_{ik} \mid u_{1} \in \overline{U_{d}} \right\}.$ Take & Ely and of Ely alm & The VJET: - Jup his change unamfit we of · =+ If JE Catr (+) $= \frac{2}{(\pi e^{-2} + 1e^{-2})} = \frac{2}{2} + \frac{2}{2} = \frac{2}{2}$ 1 = 4 1 => Ygelf: #[yeld] v1 ~ 6k=] = [(at - (+1: <+>]

$$\begin{array}{l}
\mathcal{L} \quad \mathcal{B}_{r}^{i} := \left[\begin{array}{c} u_{1} c v_{1} \\ \overline{r} \\ \overline{r} \\ \overline{r} \\ \mathcal{P}_{r}^{i} := \right] \begin{array}{c} u_{1} c v_{1} \\ \overline{r} \\ \overline{r}$$

- So for the rest we may assume that $\underline{\Gamma}$ is abelian; or even cyclic with $\Gamma = \langle \gamma \rangle$.
- For Γ abelian $C(L/K, \gamma)$ follows from Theorem 7.8.7.

• But Theorem 7.8.7 depends on Theorem 7.8.6, which we did not prove.

- Now consider the special case $L = K(\mu_m)$ for some m > 1.
 - Let J_m denote the group of fractional ideals of \mathcal{O}_K that are coprime to m.

= ft likelik af monthlik

This is hick - Pm .

- As in the proof of the analytic class number formula one shows that, for some explicit positive real constant c that is independent of χ , we have $\chi : \Gamma \to \square^{\times}$.

$$L_{K}(\chi, s) = \begin{cases} 1 & \text{if } \chi \circ \bar{N} = 1 \\ 0 & \text{if } \chi \circ \bar{N} \neq 1 \end{cases} \cdot \frac{c}{s-1} + O(1) \quad \text{for } \operatorname{Re}(s) > 1 - \frac{1}{|K/Q|} \cdot \frac{1}{|K/Q|} \cdot$$

$$= \frac{1}{d} \cdot \frac{\sum_{i=1}^{L} N_{-i} |N_{i}\rangle^{r}}{\sum_{i=1}^{L} \sum_{i=1}^{L} \frac{[\gamma] \in N_{i} - M_{i} |N_{i}|}{[\gamma] \in N_{i} - M_{i} |N_{i}|} \cdot \frac{[N_{-i} |N_{i}|]}{[N_{i}|\gamma] \log h |N_{i}|} \cdot \frac{[\gamma] \in N_{i} - M_{i} |N_{i}|}{[N_{i}|\gamma] \log h |N_{i}|} \cdot \frac{[\gamma] \times [N_{-i} |N_{-i}|]}{[N_{-i}|\gamma|]} \cdot \frac{[N_{-i} |N_{-i}|]}{[N$$