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1 Some commutative algebra

1.1 Integral ring extensions

All rings are assumed to be commutative and unitary. Consider a ring extension
A ⊂ B.

Definition 1.1.1: (a) An element b ∈ B is called integral over A if there exists a
monic f ∈ A[X] with f(b) = 0.

(b) The ring B is called integral over A if every b ∈ B is integral over A.

(c) The integral closure of A in B is the set Ã := {b ∈ B | b integral over A}.

Definition-Example 1.1.2: (a) An element z ∈ C is integral over Q if and only if z
is an algebraic number.

(b) An element z ∈ C is integral over Z if and only if z is an algebraic integer.

Proposition 1.1.3: The following statements for an element b ∈ B are equivalent:

(a) b is integral over A.

(b) The subring A[b] ⊂ B is finitely generated as an A-module.

(c) b is contained in a subring of B which is finitely generated as an A-module.

Proposition 1.1.4: (a) For any integral ring extensions A ⊂ B and B ⊂ C the ring
extension A ⊂ C is integral.

(b) The subset Ã is a subring of B that contains A.

(c) The subring Ã is its own integral closure in B.

1.2 Prime ideals

Consider an integral ring extension A ⊂ B.

Proposition 1.2.1: For every prime ideal q ⊂ B the intersection q ∩ A is a prime
ideal of A.

Definition 1.2.2: We say that q lies over q ∩ A.

Theorem 1.2.3: For any prime ideals q ⊂ q′ ⊂ B over the same p we have q = q′.

Theorem 1.2.4: For every prime ideal p ⊂ A there exists a prime ideal q ⊂ B over p.
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1.3 Normalization

From now on we assume that A is an integral domain with quotient field K.

Definition 1.3.1: (a) The integral closure of A in K is called the normalization of A.

(b) The ring A is called normal if this normalization is A.

Proposition 1.3.2: (a) The normalization of A is normal.

(b) Any unique factorization domain is normal.

1.4 Localization

Definition 1.4.1: A subset S ⊂ A ∖ {0} is called multiplicative if it contains 1 and
is closed under multiplication.

Definition-Proposition 1.4.2: For any multiplicative subset S ⊂ A the subset

S−1A :=
{

a
s

∣∣ a ∈ A, s ∈ S
}

is a subring of K that contains A and is called the localization of A with respect to S.

Example 1.4.3: For every prime ideal p ⊂ A the subset A∖ p is multiplicative. The
ring Ap := (A∖ p)−1A is called the localization of A at p.

Proposition 1.4.4: For every multiplicative subset S ⊂ A we have:

(a) S−1Ã = S̃−1A.

(b) If A is normal, then so is S−1A.

1.5 Field extensions

In the following we consider a normal integral domain A with quotient field K, and
an algebraic field extension L/K, and let B be the integral closure of A in L.

Proposition 1.5.1: For any homomorphism σ : L ! M of field extensions of K, an
element x ∈ L is integral over A if and only if σ(x) is integral over A.

Proposition 1.5.2: An element x ∈ L is integral over A if and only if the minimal
polynomial of x over K has coefficients in A.

Proposition 1.5.3: We have (A∖ {0})−1B = L.
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1.6 Norm and Trace

Assume that L/K is finite separable. Let K̄ be an algebraic closure of K.

Definition 1.6.1: For any x ∈ L we consider the K-linear map Tx : L ! L, u 7! ux.

(a) The norm of x for L/K is the element NmL/K(x) := det(Tx) ∈ K.

(b) The trace of x for L/K is the element TrL/K(x) := tr(Tx) ∈ K.

Proposition 1.6.2: (a) For any x, y ∈ L we have NmL/K(xy) = NmL/K(x)·NmL/K(y).

(b) The map NmL/K induces a homomorphism L× ! K×.

(c) The map TrL/K : L ! K is K-linear.

Proposition 1.6.3: For any x ∈ L we have

NmL/K(x) =
∏

σ∈HomK(L,K̄)

σ(x) and TrL/K(x) =
∑

σ∈HomK(L,K̄)

σ(x).

Proposition 1.6.4: The map TrL/K : L ! K is non-zero.

Proposition 1.6.5: For any two finite separable field extensions M/L/K we have:

(a) NmL/K ◦NmM/L = NmM/K .

(b) TrL/K ◦TrM/L = TrM/K .

Proposition 1.6.6: For any x ∈ B we have:

(a) NmL/K(x) ∈ A.

(b) NmL/K(x) ∈ A× if and only if x ∈ B×.

(c) TrL/K(x) ∈ A.

1.7 Discriminant

Proposition 1.7.1: The map

L× L −! K, (x, y) 7! TrL/K(xy)

is a non-degenerate symmetric K-bilinear form.

Lemma 1.7.2: Write HomK(L, K̄) = {σ1, . . . , σn} with [L/K] = n and consider the
matrix T := (σi(bj))i,j=1,...,n. Then

T T · T =
(
TrL/K(bibj)

)
i,j=1,...,n

.

Definition 1.7.3: The discriminant of any ordered basis (b1, . . . , bn) of L over K is
the determinant of the associated Gram matrix

disc(b1, . . . , bn) := det
(
TrL/K(bibj)

)
i,j=1,...,n

= det(T )2 ∈ K.
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Proposition 1.7.4: If L = K(b) and n = [L/K], then disc(1, b, . . . , bn−1) is the
discriminant of the minimal polynomial of b over K.

Proposition 1.7.5: (a) We have disc(b1, . . . , bn) ∈ K×.

(b) If b1, . . . , bn ∈ B, then disc(b1, . . . , bn) ∈ A∖ {0} and

B ⊂ 1

disc(b1, . . . , bn)
·
(
Ab1 + . . .+ Abn

)
.

Proposition 1.7.6: If A is a principal ideal domain, then:

(a) B is a free A-module of rank [L/K].

(b) For any basis (b1, . . . , bn) of B over A, the number disc(b1, . . . , bn) is independent
of the basis up to the square of an element of A×.

Definition 1.7.7: This number is called the discriminant of B over A or of L over K
and is denoted discB/A or discL/K .

1.8 Linearly disjoint extensions

Definition 1.8.1: Two finite separable field extensions L,L′/K are called linearly
disjoint if L⊗K L′ is a field.

Proposition 1.8.2: For any two finite separable field extensions L,L′/K within a
common overfield M the following statements are equivalent:

(a) L and L′ are linearly disjoint over K.

(b) [LL′/K] = [L/K] · [L′/K]

(c) [LL′/L] = [L′/K]

(d) [LL′/L′] = [L/K]

If at least one of L/K and L′/K is galois, they are also equivalent to

(e) L ∩ L′ = K.

Theorem 1.8.3: Consider linearly disjoint finite separable field extensions L,L′/K.
Assume that A is a principal ideal domain and that d := discL/K and d′ := discL′/K are
relatively prime in A. Let B,B′, B̃ be the integral closures of A in L,L′, LL′. Then:

(a) B ⊗A B′ ∼
! B̃.

(b) discLL′/K = d[L
′/K] · d′[L/K] up to the square of a unit in A.
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1.9 Dedekind Rings

Definition 1.9.1: (a) A ring A is noetherian if every ideal is finitely generated.

(b) An integral domain A has Krull dimension 1 if it is not a field and every non-zero
prime ideal is a maximal ideal.

(c) A noetherien normal integral domain of Krull dimension 1 is called a Dedekind
ring.

Proposition 1.9.2: Any principal ideal domain that is not a field is a Dedekind ring.

Examples 1.9.3: Take A = Z or A = Z[i] or A = k[t] or A = k[[t]] for a field k.

In the following we assume that A ⊂ K is Dedekind and that B ⊂ L is as above.

Proposition 1.9.4: (a) For every multiplicative subset S ⊂ A the ring S−1A is
Dedekind or a field.

(b) For every prime ideal 0 ̸= p ⊂ A the localization Ap is a discrete valuation ring.

Theorem 1.9.5: The ring B is Dedekind and finitely generated as an A-module.

1.10 Fractional Ideals

Let A be a Dedekind ring with quotient field K.

Definition 1.10.1:

(a) A non-zero finitely generated A-submodule of K is called a fractional ideal of A.

(b) A fractional ideal of the form (x) := Ax for some x ∈ K× is called principal.

(c) The product of two fractional ideals a, b is defined as

ab :=
{∑r

i=1 aibi
∣∣ r ⩾ 0, ai ∈ a, bi ∈ b

}
.

(d) The inverse of a fractional ideal a is defined as

a−1 =
{
x ∈ K

∣∣ x · a ⊂ A
}
.

Proposition 1.10.2: For any fractional ideals a, b, c we have:

(a) There exist a, b ∈ A∖ {0} with (a) ⊂ a ⊂ (1
b
).

(b) ab and a−1 are fractional ideals.

(c) ab = ba and (ab)c = a(bc) and (1)a = a.

(d) a ⊂ A if and only if A ⊂ a−1.

Lemma 1.10.3: For every non-zero ideal a ⊂ A there exist an integer r ⩾ 0 and
maximal ideals p1, . . . , pr such that p1 · · · pr ⊂ a.

Lemma 1.10.4: For every maximal ideal p ⊂ A and every fractional ideal a we have
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(a) A ⫋ p−1.

(b) a ⫋ p−1a.

(c) p−1p = (1).

Theorem 1.10.5: Any non-zero ideal of A is a product of maximal ideals and the
factors are unique up to permutation. (Unique factorization of ideals)

Theorem 1.10.6: (a) The set JA of fractional ideals is an abelian group with the
above product and inverse and the unit element (1) = A.

(b) The group JA is the free abelian group with basis the maximal ideals of A.

1.11 Ideals

Consider any non-zero ideals a, b ⊂ A.

Definition 1.11.1: We write b|a and say that b divides a if and only if a ⊂ b.

Proposition 1.11.2: For any a, b ∈ A∖ {0} we have b|a if and only if (b)|(a).

Proposition 1.11.3: We have b|a if and only if there is a non-zero ideal c ⊂ A with
bc = a.

Definition 1.11.4: Ideals a, b ⊂ A with a+ b = A are called coprime.

Proposition 1.11.5: For any non-zero ideals a, b ⊂ A the following are equivalent:

(a) a and b are coprime.

(b) Their factorizations in maximal ideals do not have a common factor.

(c) a ∩ b = ab.

Chinese Remainder Theorem 1.11.6: For any pairwise coprime ideals a1, . . . , ar ⊂
A we have a ring isomorphism

A/a1 · · · ar ∼ // A/a1 × . . .× A/ar,

a+ a1 · · · ar � // (a+ a1, . . . , a+ ar).

Proposition 1.11.7: For any fractional ideals a ⊂ b there exists b ∈ b with b = a+(b).

Proposition 1.11.8: Every fractional ideal of A is generated by 2 elements.

Proposition 1.11.9: For any non-zero ideal a and any fractional ideal b of A there
exists an isomorphism of A-modules A/a ∼= b/ab.
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1.12 Ideal class group

Definition 1.12.1: The factor group

Cl(A) :=
{
fractional ideals

} / {
principal ideals

}
is called the ideal class group of A. Its order h(A) := |Cl(A)| is called the class number
of A.

Proposition 1.12.2: Any ideal class is represented by a non-zero ideal of A.

Proposition 1.12.3: There is a fundamental exact sequence

1 // A× // K× // JA // Cl(A) // 1.
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2 Minkowski’s lattice theory

2.1 Lattices

Fix a finite dimensional R-vector space V .

Proposition 2.1.1: There exists a unique topology on V such that for any basis
v1, . . . , vn of V the isomorphism Rn ! V , (xi)i 7!

∑n
i=1 xivi is a homeomorphism.

Definition 2.1.2: A subset X ⊂ V is called ...

(a) ... bounded if and only if the corresponding subset of Rn is bounded.

(b) ... discrete if and only if the corresponding subset of Rn is discrete, that is, if its
intersection with any bounded subset is finite.

Now we are interested in an (additive) subgroup Γ ⊂ V .

Definition-Proposition 2.1.3: The following are equivalent:

(a) Γ is discrete.

(b) Γ =
⊕m

i=1 Zvi for R-linearly independent elements v1, . . . , vm.

Such a subgroup is called a lattice.

Definition-Proposition 2.1.4: The following are equivalent:

(a) Γ is discrete and there exists a bounded subset Φ ⊂ V such that Γ + Φ = V .

(b) Γ is discrete and V/Γ is compact.

(c) Γ =
⊕n

i=1 Zvi for an R-basis v1, . . . , vn of V .

Such a subgroup is called a complete lattice.

In the following we consider a lattice Γ ⊂ V .

Definition 2.1.5: Any measurable subset Φ ⊂ V such that Φ ! V/Γ is bijective is
called a fundamental domain for Γ. (With respect to the measure from §2.2.)

Example 2.1.6: If Γ =
⊕n

i=1 Zvi for an R-basis v1, . . . , vn of V , a fundamental domain
is:

Φ :=
{∑n

i=1 xivi
∣∣ ∀i : 0 ⩽ xi < 1

}
.

Caution 2.1.7: If V ̸= 0, there does not exist a compact fundamental domain,
because there is a problem with the boundary.

2.2 Volume

Now we fix a scalar product ⟨ , ⟩ on V .
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Proposition 2.2.1: (a) There exists a unique Lebesgue measure dvol on V such that
for any measurable function f on V and any orthonormal basis (e1, . . . , en) of V
we have ∫

V

f(v) dvol(v) =

∫
Rn

f
(∑n

i=1 xiei
)
dx1 . . . dxn.

(b) For any R-basis (v1, . . . , vn) of V we then have

vol
(
{
∑n

i=1 xivi
∣∣ ∀i : 0 ⩽ xi < 1}

)
=

√
det

(
⟨vi, vj⟩

)n
i,j=1

and ∫
V

f(v) dvol(v) =

∫
Rn

f
(∑n

i=1 yivi
)
dy1 . . . dyn ·

√
det

(
⟨vi, vj⟩

)n
i,j=1

.

Definition-Proposition 2.2.2: Consider any fundamental domain Φ ⊂ V .
(a) For any measurable function f on V/Γ this integral is independent of Φ:∫

V/Γ

f(v̄) dvol(v̄) :=

∫
Φ

f(v + Γ) dvol(v).

(b) In particular we obtain

vol(V/Γ) :=

∫
V/Γ

1 dvol(v̄) = vol(Φ).

Fact 2.2.3: We have vol(V/Γ) < ∞ if and only if Γ is a complete lattice.

2.3 Lattice Point Theorem

Let Γ be a complete lattice in a finite dimensional euclidean vector space V .

Definition 2.3.1: A subset X ⊂ V is centrally symmetric if and only if

X = −X := {−x | x ∈ X}.

Theorem 2.3.2: Let X ⊂ V be a centrally symmetric convex subset which satisfies

vol(X) > 2dim(V ) · vol(V/Γ).
Then X ∩ Γ contains a non-zero element.

Remark 2.3.3: The theorem is sharp. For example if V = Rn and Γ = Zn and
X =]− 1, 1[n, then we have vol(X) = 2dim(V ) · vol(V/Γ) and X ∩ Γ = {0}.

Application 2.3.4: An n-dimensional ball Br of radius r has volume

vol(Br) =
πn/2

Γ(n
2
+ 1)

· rn.

Therefore the smallest non-zero vector in Γ has length

⩽
2√
π
· n

√
vol(V/Γ) · Γ(n

2
+ 1).

More generally, for every k one can bound the combined lengths of k linearly indepen-
dent vectors in Γ using successive minima.
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3 Algebraic integers

3.1 Number fields

Definition 3.1.1: (a) A finite field extension K/Q is called an (algebraic) number
field.

(b) A number field of degree 2, 3, 4, 5,... is called quadratic, cubic, quartic, quintic,...

(c) The integral closure OK of Z in K is called the ring of algebraic integers in K.

In the rest of this chapter we fix such K and OK and abbreviate n := [K/Q].

Proposition 3.1.2: (a) The ring OK is Dedekind.

(c) OK is a free Z-module of rank n.

(b) Any fractional ideal a of OK is a free Z-module of rank n.

3.2 Absolute discriminant

Proposition 3.2.1: (a) For any Z-submodule Γ ⊂ K of rank n with an ordered
Z-basis (x1, . . . , xn) the following value depends only on Γ:

disc(Γ) := disc(x1, . . . , xn) ∈ Q×.

(b) For any two Z-submodules Γ ⊂ Γ′ ⊂ K of rank n the index [Γ′ : Γ] is finite and
we have

disc(Γ) = [Γ′ : Γ]2 · disc(Γ′).

(c) For any Z-submodule Γ ⊂ OK of rank n we have disc(Γ) ∈ Z ∖ {0}.

Definition 3.2.2: The number

dK := disc(OK) ∈ Z ∖ {0}

is called the discriminant of OK or of K.

Corollary 3.2.3: If there exist a1, . . . , an ∈ OK such that disc(a1, . . . , an) is square-
free, then

OK = Za1 ⊕ . . .⊕ Zan.

3.3 Absolute norm

Definition 3.3.1: The absolute norm of a non-zero ideal a ⊂ OK is the index

Nm(a) := [OK : a] ∈ Z⩾1.
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Proposition 3.3.2: For any a ∈ OK ∖ {0} we have Nm((a)) = |NmK/Q(a)|.

Proposition 3.3.3: For any integer N ⩾ 1 there exist only finitely many non-zero
ideals a ⊂ OK with Nm(a) ⩽ N .

Proposition 3.3.4: For any two non-zero ideals a, b ⊂ OK we have

Nm(ab) = Nm(a) · Nm(b).

Let JK denote the group of fractional ideals of OK .

Corollary 3.3.5: The absolute norm extends to a unique homomorphism

Nm: JK −! (Q>0, ·).

3.4 Real and complex embeddings

Throughout the following we abbreviate Σ := HomQ(K,C) and set

r := the number of σ ∈ Σ with σ(K) ⊂ R,
s := the number of σ ∈ Σ with σ(K) ̸⊂ R, up to complex conjugation.

Proposition 3.4.1: We have r + 2s = n.

Proposition 3.4.2: We have ring isomorphisms

K ⊗Q C ∼ //

∪
KC :=

∏
σ∈Σ C,

∪
K ⊗Q R ∼ // KR :=

{
(zσ)σ ∈ KC

∣∣ ∀σ ∈ Σ: zσ̄ = z̄σ
}
.

x⊗ z � // (σ(x)z)σ.

The map x 7! x⊗ 1 induces an embdding j : K ↪! KR.

Proposition 3.4.3: For every fractional ideal a of OK the image j(a) is a complete
lattice in KR.

To describe this with more explicit coordinates we let σ1, . . . , σr be the real embeddings
and σr+1, . . . , σn the non-real embeddings such that σ̄r+j = σr+j+s for all 1 ⩽ j ⩽ s.

Proposition 3.4.4: We have an isomorphism of R-vector spaces

KR
∼

−! Rn, (zσ)σ 7−!
(
zσ1 , . . . , zσr ,Re zσr+1 , . . . ,Re zσr+s , Im zσr+1 , . . . , Im zσr+s

)
.
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3.5 Quadratic number fields

Proposition 3.5.1: The quadratic number fields are precisely the splitting fields of
the poiynomials X2 − d for all squarefree integers d ∈ Z ∖ {0, 1}.

Convention 3.5.2: For any positive integer d we let
√
d be the positive real square

root of d. For any negative integer d we uncanonically choose a square root
√
d in iR.

Proposition 3.5.2: For d as above and K = Q(
√
d) we have

OK =

{ Z[
√
d ] if d ≡ 2, 3 mod (4),

Z[1+
√
d

2
] if d ≡ 1 mod (4)

and

dK =

{
4d if d ≡ 2, 3 mod (4),
d if d ≡ 1 mod (4)

Corollary 3.5.4: The integer d is uniquely determined by K, namely as the squarefree
part of dK .

Remark 3.5.5: The possible discriminants of quadratic number fields are sometimes
called fundamental discriminants. As the discriminant is somewhat more canonically
associated to K than the number d, some authors prefer to write K = Q(

√
dK).

Definition 3.5.6: We have the following cases:

(a) If d > 0, there exist precisely two distinct embeddings σ1, σ2 : K ↪! R and we
call K real quadratic. In this case we obtain a natural embedding

(σ1, σ2) : K ↪−! R2.

(b) If d < 0, there exist precisely two distinct embeddings σ, σ̄ : K ↪! C that are
conjugate under complex conjugation, and we call K imaginary quadratic. In
this case we obtain a natural embedding

σ : K ↪−! C.

3.6 Cyclotomic fields

Fix an integer n ⩾ 1.

Definition 3.6.1: (a) An element ζ ∈ C with ζn = 1 is called an n-th root of unity.

(b) An element ζ ∈ C× of precise order n is called a primitive n-th root of unity.

Proposition 3.6.2: The n-th roots of unity form a cyclic subgroup µn ⊂ C×, which
is generated by any primitive n-th root of unity, for instance by e

2πi
n .

For the following we fix a primitive n-th root of unity ζ and set K := Q(µn) = Q(ζ).
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Proposition 3.6.3: (a) An integral power ζa has order n if and only if gcd(a, n) = 1.

(b) If n ⩾ 2, then for any such a we have 1−ζa

1−ζ
∈ O×

K . (Cyclotomic units)

Definition 3.6.4: The n-th cyclotomic polynomial Φn is the monic polynomial of
degree φ(n) := |(Z/nZ)×| with the primitive n-th roots of unity as simple roots.

Theorem 3.6.5: The polynomial Φn is an irreducible element of Z[X].

Theorem 3.6.6: The extension K/Q is finite galois of degree φ(n) and there is a
natural isomorphism e : Gal(K/Q)

∼
! (Z/nZ)× with the property

∀γ ∈ Gal(K/Q) : γ(ζ) = ζe(γ).

Theorem 3.6.7: If n = ℓν for a prime ℓ and an integer ν ⩾ 1, then:

(a) We have Φℓν (X) =
∑ℓ−1

i=0 X
iℓν−1 .

(b) The ideal (1− ζ) of OK satisfies (1− ζ)ℓ
ν−1(ℓ−1) = (ℓ).

(c) The ideal (1 − ζ) is the unique prime ideal of OK above (ℓ) ⊂ Z and has the
residue field OK/(1− ζ) ∼= Fℓ.

(d) OK = Z[ζ] ∼= Z[X]/(Φℓν ).

(e) disc(OK) = ±ℓℓ
ν−1(νℓ−ν−1).

Theorem 3.6.8: For arbitrary n we have:

(a) OK = Z[ζ].
(b) The discriminant disc(OK) ∈ Z is divisible precisely by the primes dividing n.

3.7 Quadratic Reciprocity

Fix an odd prime ℓ and set K := Q(µℓ) and ζ := e
2πi
ℓ .

Definition 3.7.1: The Legendre symbol of an integer a with respect to ℓ is

(a
ℓ

)
:=


0 if a ≡ 0 mod (ℓ),
+1 if a ≡ b2 mod (ℓ) for some b ∈ Z ∖ ℓZ,
−1 otherwise.

In the first two cases a is called a quadratic residue, otherwise a quadratic non-residue
modulo (ℓ).

Proposition 3.7.2: For any integers a, b we have:

(a) (a
ℓ
) = ( b

ℓ
) whenever a ≡ b mod (ℓ).

(b) (a
ℓ
) ≡ a

ℓ−1
2 mod (ℓ).

(c) (ab
ℓ
) = (a

ℓ
)( b

ℓ
).

(d) (−1
ℓ
) = (−1)

ℓ−1
2 .
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Definition 3.7.3: The Gauss sum associated to the prime ℓ is gℓ :=
ℓ−1∑
a=1

(a
ℓ
) · ζa.

Proposition 3.7.4: The Gauss sum satisfies g2ℓ = ℓ∗ := (−1)
ℓ−1
2 ℓ.

Proposition 3.7.5: The unique subfield of K of degree 2 over Q is K ′ := Q(
√
ℓ∗ ).

Proposition 3.7.6: For any distinct odd primes ℓ, p we have ( ℓ
∗

p
) = (p

ℓ
).

Theorem 3.7.7: (Gauss Quadratic Reciprocity Law)

(a) For any distinct odd primes ℓ, p we have ( ℓ
p
)(p

ℓ
) = (−1)

(p−1)(ℓ−1)
4 .

(b) For any odd prime ℓ we have (−1
ℓ
) = (−1)

ℓ−1
2 . (First supplement)

(c) For any odd prime ℓ we have (2
ℓ
) = (−1)

ℓ2−1
8 . (Second supplement)
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4 Additive Minkowski theory

4.1 Euclidean embedding

We endow KC := CΣ with the standard hermitian scalar product〈
(zσ)σ, (wσ)σ

〉
:=

∑
σ∈Σ

z̄σwσ.

Proposition 4.1.1: Its restriction to KR ×KR has values in R and turns KR into a
euclidean vector space.

Proposition 4.1.2: Under the isomorphism of Proposition 3.4.4 this scalar product
on KR corresponds to the following scalar product on Rn:

〈
(xj)j, (yj)j

〉
:=

r∑
j=1

xjyj +
n∑

j=r+1

2xjyj.

4.2 Lattice bounds

Proposition 4.2.1: For any fractional ideal a of OK we have

vol(KR/j(a)) =
√

| disc(a)| = Nm(a) ·
√
|dK |.

Theorem 4.2.2: Consider a fractional ideal a of OK and positive real numbers cσ for
all σ ∈ Σ such that cσ̄ = cσ and∏

σ∈Σ

cσ > ( 2
π
)s ·

√
|dK | · Nm(a).

Then there exists an element a ∈ a∖ {0} with the property

∀σ ∈ Σ: |σ(a)| < cσ.

4.3 Finiteness of the class group

Theorem 4.3.1: For any fractional ideal a of OK there exists an element a ∈ a∖ {0}
with

|NmK/Q(a)| ⩽ ( 2
π
)s ·

√
|dK | · Nm(a).

Proposition 4.3.2: Every ideal class in Cl(OK) contains an ideal a ⊂ OK with

Nm(a) ⩽ ( 2
π
)s ·

√
|dK |.

Theorem 4.3.3: The class group Cl(OK) is finite.
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4.4 Discriminant bounds

Theorem 4.4.1: For any n and c there exist at most finitely many number fields
K/Q of degree n and with |dK | ⩽ c.

Theorem 4.4.2: For any number field K of degree n over Q we have√
|dK | ⩾

nn

n!
·
(π
4

)n/2

.

Theorem 4.4.3: (Hermite) For any c there exist at most finitely many number fields
K/Q with |dK | ⩽ c.

Theorem 4.4.4: (Minkowski) For any number field K ̸= Q we have |dK | > 1.
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5 Multiplicative Minkowski theory

5.1 Roots of unity

Lemma 5.1.1: We have a short exact sequence

1 // (S1)Σ // K×
C = (C×)Σ ℓ // RΣ // 0,

(zσ)σ
� // (log |zσ|)σ.

Set Γ := ℓ(O×
K) and let µ(K) denote the group of elements of finite order in K×.

Proposition 5.1.2: The group µ(K) is a finite subgroup of O×
K and we have a short

exact sequence
1 // µ(K) // O×

K
// Γ // 0.

Proposition 5.1.3: The group µ(K) is cyclic of even order.

Example 5.1.4: For any squarefree d ∈ Z ∖ {1} we have

µ(Q(
√
d )) =

{ cyclic of order 6 if d = −3,
cyclic of order 4 if d = −1,
cyclic of order 2 otherwise.

5.2 Units

Lemma 5.2.1: The group Γ is a lattice in RΣ.

Consider the homomorphisms

Nm: K×
C = (C×)Σ // C×, (zσ)σ

� //
∏

σ∈Σ zσ

Tr: (R×)Σ // R, (tσ)σ
� //

∑
σ∈Σ tσ

Lemma 5.2.2: We have a commutative diagram

O×
K
� � //

Nm
��

K× � � j //

Nm
��

(KC)
× ℓ // //

Nm
��

RΣ

Tr

��
{±1} � � // Q× � � // C× log | | // // R

Consider the R-subspaces

(RΣ)+ :=
{
(tσ)σ ∈ RΣ

∣∣ ∀σ : tσ̄ = tσ
}
,

H := ker
(
Tr: (RΣ)+ ! R

)
.

Lemma 5.2.3: We have Γ ⊂ H and dimR(H) = r + s− 1.
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5.3 Dirichlet’s unit theorem

Theorem 5.3.1: The group Γ is a complete lattice in H.

Theorem 5.3.2: The group O×
K is isomorphic to µ(K)× Zr+s−1.

Caution 5.3.3: The isomorphism is uncanonical.

Corollary 5.3.4: The group O×
K is finite if and only if K is Q or imaginary quadratic.

Corollary 5.3.5: The group O×
K has Z-rank 1 if and only if (r, s) ∈

{
(2, 0), (1, 1), (0, 2)

}
.

In that case we have
O×

K = µ(K)× εZ

for some unit ε of infinite order.

Definition 5.3.6: Any choice of such ε is then called a fundamental unit.

5.4 The real quadratic case

Suppose that K = Q(
√
d) for a squarefree d > 1 and choose an embedding K ↪! R.

Fact 5.4.1: There is a unique choice of fundamental unit ε > 1.

Proposition 5.4.2: If OK = Z[
√
d], then

(a) O×
K =

{
a+ b

√
d
∣∣ a, b ∈ Z, a2 − b2d = ±1

}
.

(b) O×
K ∩ R>1 =

{
a+ b

√
d
∣∣ a, b ∈ Z, a2 − b2d = ±1, a, b > 0

}
.

(c) The fundamental unit ε > 1 is the element a + b
√
d ∈ O×

K ∩ R>1 as in (b) with
the smallest value for a, or equivalently for b.

Theorem 5.4.3: For any squarefree integer d > 1 there are infinitely many solutions
(a, b) ∈ Z2 of the diophantine equation a2 − b2d = 1.

Remark 5.4.4: The equation a2−b2d = −1 may or may not have a solution (a, b) ∈ Z2.
But if it has a solution, it has infinitely many.

Proposition 5.4.5: The fundamental unit ε > 1 of K with discriminant D satisfies

ε ⩾

√
D +

√
D − 4

2
> 1.

Consequently, if some unit of infinite order u > 1 is known, we have u = εk for some
1 ⩽ k ⩽ log(u)/ log((

√
D +

√
D − 4)/2) and one can efficiently find ε.

Remark 5.4.6: One can effectively find ε using continued fractions.
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6 Extensions of Dedekind rings

6.1 Modules over Dedekind rings

Let A be a Dedekind ring with quotient field K.

Definition 6.1.1: Consider an A-module M .

(a) An element m ∈ M is called torsion if there exists a ∈ A∖{0} such that am = 0.

(b) The module M is called torsion if every element of M is torsion.

(c) The module M is called torsion-free if no non-zero element of M is torsion.

Theorem 6.1.2: Any finitely generated A-module is isomorphic to the direct sum of
a torsion module and a torsion-free module.

Theorem 6.1.3: Any non-zero finitely generated torsion-free A-module is isomorphic
to a⊕ Ar−1 for a non-zero ideal a ⊂ A and an integer r ⩾ 1.

Theorem 6.1.4: Any finitely generated torsion A-module is isomorphic to

(a)
⊕r

i=1 A/p
ei
i for r ⩾ 0 and maximal ideals pi ⊂ A and integral exponents ei ⩾ 1.

(b)
⊕s

i=1 A/ai for s ⩾ 0 and non-zero ideals as ⊂ . . . ⊂ a1 ⫋ A.

Proposition 6.1.5: Consider a K-vector space V of finite dimension n and a finitely
generated A-submodule M ⊂ V that generates V over K. Then M is isomorphic to a
direct sum of n fractional ideals of A.

Proposition 6.1.6: For any fractional ideals a, b of A there is a natural isomorphism

ba−1 ∼
! HomA(a, b), c 7! (φc : a 7! ca).

6.2 Decomposition of prime ideals

For the rest of this chapter we take a finite separable field extension L/K of degree n.
Then the integral closure B of A in L is a finitely generated A-module that generates
L as a K-vector space and is a Dedekind ring. We abbreviate the residue field at any
maximal ideal p ⊂ A by k(p) := A/p, and likewise for any maximal ideal of B. Where
applicable we let C be the integral closure of B in a finite separable extension M/L.

Consider a maximal ideal p ⊂ A. Throughout the following we impose the

Assumption 6.2.1: The residue field k(p) is perfect.

Note that pB is a non-zero ideal of B and therefore has a unique prime factorization

pB = qe11 · · · qerr

with distinct maximal ideals qi ⊂ B and integral exponents ei ⩾ 1.
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Proposition 6.2.2: (a) The ideals qi are precisely the prime ideals of B above p.

(b) For each i the residue field k(qi) is a finite extension of the residue field k(p).

(c) Letting fi denote the degree of this residue field extension, we have
r∑

i=1

eifi = n.

Definition 6.2.3:

(a) The number eqi|p := ei is called the ramification degree of qi over p.

(b) The number fqi|p := fi is called the inertia degree of qi over p.

(c) We call qi unramified over p if ei = 1.

(d) We call qi ramified over p if ei > 1.

Definition 6.2.4:

(a) We call p unramified in B if all ei = 1, that is, if pB = q1 · · · qr.
(b) We call p ramified in B if some ei > 1.

(c) We call p totally split in B if all ei = fi = 1, that is, if r = n and pB = q1 · · · qn.
(d) We call p totally inert in B if r = e1 = 1, that is, if pB is prime.

(e) We call p totally ramified in B if r = f1 = 1, that is, if pB = qn for a prime q ⊂ B.

Proposition 6.2.5: Suppose that B = A[β] and let f ∈ A[X] be the minimal poly-
nomial of β above K. Set f̄ := f mod p and write f̄ =

∏r
i=1 f̄

ei
i with inequivalent

irreducible factors f̄i ∈ k(p)[X] and integral exponents ei ⩾ 1. Choose fi ∈ A[X] with
f̄i = fi mod p. Then pB =

∏r
i=1 q

ei
i with distinct prime ideals qi := pB + fi(β)B.

Example 6.2.6: Take L = Q(
√
d ) with d ∈ Z ∖ {1} squarefree. Then an odd prime

p of Z with (d
p

)
=


0 is (totally) ramified in OL,
1 is (totally) decomposed in OL,

−1 is (totally) inert in OL.

Proposition 6.2.7: For any a prime r ⊂ C above q ⊂ B above p ⊂ A we have

er|p = er|q · eq|p and fr|p = fr|q · fq|p.

6.3 Decomposition group

From now until §6.5 we assume in addition that L/K is galois with Galois group Γ.

Lemma 6.3.1: For any prime ideals p1, . . . , pn and any ideal a of a ring we have

a ⊂
n⋃

i=1

pi ⇐⇒ ∃ i : a ⊂ pi.
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Theorem 6.3.2: (a) The group Γ acts on B and on the set of prime ideals of B.

(b) The group Γ acts transitively on the set of prime ideals q ⊂ B above p.

Definition 6.3.3: The stabilizer of q is called the decomposition group of q:

Γq :=
{
γ ∈ Γ

∣∣ ∀x ∈ q : γx ∈ q
}
.

Proposition 6.3.4:

(a) The numbers e := eq|p and f := fq|p depend only on p.

(b) We have pB =
∏

[γ]∈Γ/Γq

γqe.

(c) We have n = r · e · f .

(d) For any γ ∈ Γ we have Γγq =
γΓq.

Proposition 6.3.5:

(a) We have Γq = 1 if and only if p is totally split in B.

(b) We have Γq = Γ if and only if there is a unique prime q ⊂ B above p.

Proposition 6.3.6: Set L′ := LΓq and B′ := B ∩ L′ and q′ := q ∩B′.

(a) Then q is the unique prime of B above q′ and q′B = qe.

(b) We have eq|q′ = e and fq|q′ = f and eq′|p = fq′|p = 1.

6.4 Inertia group

Next Γq acts on the residue field k(q) := B/q by a natural homomorphism

Γq −! Aut(k(q)/k(p)).

Definition 6.4.1: Its kernel is called the inertia group of q:

Iq :=
{
γ ∈ Γ

∣∣ ∀x ∈ B : γx ≡ x mod q
}
.

Proposition 6.4.2: The extension k(q)/k(p) is finite galois and the above homomor-
phism induces an isomorphism Γq/Iq ∼= Aut(k(q)/k(p)).

Proposition 6.4.3: Set L′′ := LIq and B′′ := B ∩ L′′ and q′′ := q ∩B′′.

(a) Then q′B′′ = q′′ and q′′B = qe.

(b) We have |Iq| = e and [Γq : Iq] = f and [Γ : Γq] = r.

(c) We have eq|q′′ = e and fq|q′′ = eq′′|q′ = 1 and fq′′|q′ = f .
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6.5 Frobenius

Keeping L/K galois with group Γ, we now assume that k(p) is finite. Then k(q)/k(p)
is finite galois, and its Galois group is generated by the Frobenius automorphism
x 7! x|k(p)|.

Proposition 6.5.1: (a) There exists γ ∈ Γq that acts on k(q) through x 7! x|k(p)|.

(b) The coset γIq is uniquely determined by q.

Definition 6.5.2: Any such γ is called a Frobenius substitution at q and denoted by
Frobq|p.

Proposition 6.5.3: If q is unramified over p, then in addition:

(a) The element Frobq|p is uniquely determined by q.

(c) The conjugacy class of Frobq|p in Γ is uniquely determined by p.

(d) If Γ is abelian, then Frobq|p is uniquely determined by p.

Caution 6.5.4: Do not confuse the Frobenius substitution Frobq|p ∈ Γq with the
Frobenius automorphism x 7! x|k(p)| of k(q).

Example 6.5.5: Consider the cyclotomic field L := Q(µn) for n ̸≡ 2 mod (4).

(a) A rational prime p is ramified in OL if and only if p|n.

(b) For any p ∤ n the Frobenius substitution at p corresponds to the residue class of
p under the isomorphism Gal(L/Q) ∼= (Z/nZ)×.

(c) A rational prime p is totally split in OL if and only if p ≡ 1 mod (n).

(d) If n = pν for a prime p, then p is totally ramified in OL.

6.6 Relative norm

Now we return to the situation that L/K is finite separable of degree n.

Definition 6.6.1: The relative norm of a fractional ideal b of B is the A-submodule

NmL/K(b) :=
(
{NmL/K(y) | y ∈ b}

)
⊂ K.

Proposition 6.6.2:

(a) This is a fractional ideal of A.

(b) If b ⊂ B then NmL/K(b) ⊂ b ∩ A.

(c) For any y ∈ L× we have NmL/K((y)) = (NmL/K(y)).
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Proposition 6.6.3: For any two fractional ideals b, b′ of B we have

NmL/K(bb
′) = NmL/K(b) · NmL/K(b

′).

Proposition 6.6.4: For any fractional ideal c of C we have

NmL/K(NmM/L(c)) = NmM/K(c).

Proposition 6.6.5: For any fractional ideal a of A we have NmL/K(aB) = an.

Proposition 6.6.6: For any prime q ⊂ B above p ⊂ A we have NmL/K(q) = pfq|p .

6.7 Different

Recall from Proposition 1.7.1 that we have the non-degenerate symmetric K-bilinear
form

L× L −! K, (x, y) 7! TrL/K(xy).

Proposition 6.7.1: The subset

d :=
{
x ∈ L

∣∣ ∀y ∈ B : TrL/K(xy) ∈ A
}

is a fractional ideal of B which contains B.

Definition 6.7.2: The ideal diffB/A := d−1 ⊂ B is called the different of B over A.

Proposition 6.7.3: Suppose that B = A[β] and let f ∈ A[X] be the minimal poly-
nomial of β above K. Then diffB/A =

(
df
dX

(β)
)
.

Proposition 6.7.4: In general diffB/A is the ideal that is generated by df
dX

(β) for all
β ∈ B with L = K(β) and minimal polynomial f over K.

Proposition 6.7.5: We have diffC/A = diffC/B · diffB/A.

Theorem 6.7.6: For any prime q of B above a prime p of A we have q ∤ diffB/A if
and only if q is unramified over p.

6.8 Relative discriminant

Definition 6.8.1 The relative discriminant of B/A is the ideal of A that is generated
by the discriminants

disc(b1, . . . , bn) = det
(
TrL/K(bibj)

)
i,j=1,...,n

for all tuples (b1, . . . , bn) in B.

Proposition 6.8.2: We have discB/A = NmL/K(diffB/A).

Proposition 6.8.3: We have discC/A = NmL/K(discC/B) · disc[M/L]
B/A .
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Theorem 6.8.4: (a) A prime p ⊂ A is ramified in B if and only if p| discB/A.

(b) At most finitely many primes of A are ramified in B.

Theorem 6.8.5: For any number field K ̸= Q there exists a rational prime which is
ramified in OK .

Example 6.8.6: Consider distinct primes p1 ≡ . . . ≡ pr ≡ 1 mod (4) with r ⩾ 1.
Then the extension Q(

√
p1, . . . ,

√
pr )/Q(

√
p1 · · · pr ) is everywhere unramified.
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7 Zeta functions

7.1 Riemann zeta function

Definition 7.1.1: The Riemann zeta function is defined by the series

ζ(s) :=
∞∑
n=1

n−s.

Proposition 7.1.2: This series converges absolutely and locally uniformly for all
s ∈ C with Re(s) > 1 and defines a holomorphic function there.

Lemma 7.1.3: For all Re(s) > 1 we have

ζ(s) =
s

s− 1
− s ·

∫ ∞

1

(x− ⌊x⌋)x−s−1 dx.

Proposition 7.1.4: The function ζ(s)− 1
s−1

extends uniquely to a holomorphic func-
tion on the region Re(s) > 0.

Remark 7.1.5: It is known that ζ(s) extends uniquely to a meromorphic function on
C with a single pole at s = 1. This extension is again denoted by ζ(s).

Throughout the following we use the branch of the logarithm with log 1 = 0.

Proposition 7.1.6: An infinite product of non-zero complex numbers
∏

k⩾1 zk con-
verges to a non-zero value if and only if lim

k!∞
zk = 1 and

∑
k⩾1

log zk converges.

Proposition 7.1.7: For all Re(s) > 1 we have the Euler product

ζ(s) =
∏

p prime

(1− p−s)−1 ̸= 0.

Proposition 7.1.8: We have∑
p prime

p−s = log 1
s−1

+O(1) for real s ! 1+.

Definition 7.1.9: For x ∈ R we denote the number of primes ⩽ x by π(x).

Corollary 7.1.10: There is no ε > 0 such that for x ! ∞ we have

π(x) = O
( x

(log x)1+ε

)
.

In particular there exist infinitely many primes.
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7.2 Dedekind zeta function

Fix a number field K of degree n over Q.

Definition 7.2.1: The Dedekind zeta function of K is defined by the series

ζK(s) :=
∑
a

Nm(a)−s,

where the sum extends over all non-zero ideals a ⊂ OK .

Proposition 7.2.2: This series converges absolutely and locally uniformly for all
s ∈ C with Re(s) > 1 and defines a holomorphic function there, and we have the Euler
product

ζK(s) =
∏
p

(
1− Nm(p)−s

)−1 ̸= 0,

extended over all maximal ideals p ⊂ OK .

Proposition 7.2.3: We have

log ζK(s) =
∑
p

Nm(p)−s +
(
holomorphic for Re(s) > 1

2

)
.

Theorem 7.2.4: The function ζK(s) extends uniquely to a meromorphic function on
the region Re(s) > 1− 1

n
which is holomorphic except for a pole of order 1 at s = 1.

Proposition 7.2.5: We have∑
p

Nm(p)−s = log 1
s−1

+O(1) for real s ! 1+.

Corollary 7.2.6: There exist infinitely many rational primes that split totally in OK .

7.3 Analytic class number formula

As before we set Σ := Hom(K,C) and let r be the number of embeddings K ↪! R
and s the number of pairs of complex conjugate non-real embeddings K ↪! C. With
KC := CΣ and

KR := {(zσ)σ ∈ KC
∣∣ ∀σ ∈ Σ: zσ̄ = z̄σ}

as in §3.4 we then have

KR ∩ RΣ = {(tσ)σ ∈ RΣ
∣∣ ∀σ ∈ Σ: tσ̄ = tσ}.

The R-subspace
H := ker

(
Tr: KR ∩ RΣ ! R

)
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from §5.2 therefore becomes a euclidean vector space by its embedding H ⊂ KR ⊂ KC
and the scalar product from §4.1. By §2.2 it is thus endowed with a canonical trans-
lation invariant measure d vol. Recall from Theorem 5.3.1 that Γ := ℓ(j(O×

K)) is a
complete lattice in H.

Definition 7.3.1: The regulator of K is the real number

R :=
vol(H/Γ)√

r + s
> 0.

Let w := |µ(K)| denote the number of roots of unity in K and let h := |Cl(OK)| the
class number.

Theorem 7.3.2: Analytic class number formula: The residue of ζK(s) at s = 1 is

Ress=1 ζK(s) =
2r(2π)sRh

w
√
|dK |

> 0.

7.4 Dirichlet density

Consider a number field K and a subset A of the set P of maximal ideals of OK .

Definition 7.4.1: (a) The value

µ(A) := lim sup
s!1+

∑
p∈ANm(p)−s∑
p∈P Nm(p)−s

is called the upper Dirichlet density of A.

(b) The value

µ(A) := lim inf
s!1+

∑
p∈ANm(p)−s∑
p∈P Nm(p)−s

is called the lower Dirichlet density of A.

(c) If these coincide, their common value

µ(A) := lim
s!1+

∑
p∈A Nm(p)−s∑
p∈P Nm(p)−s

is called the Dirichlet density of A.

Proposition 7.4.2: (a) We have 0 ⩽ µ(A) ⩽ µ(A) ⩽ 1.

(b) For any subset B ⊂ A we have µ(B) ⩽ µ(A) and µ(B) ⩽ µ(A), and also
µ(B) ⩽ µ(A) if these exist.

(c) We have µ(A) = 0 if A is finite.

(d) We have µ(A) = 1 if P ∖ A is finite.

(e) For any disjoint subsets A,B ⊂ P , if two of µ(A), µ(B), µ(A∪B) exist, then so
does the third and we have µ(A) + µ(B) = µ(A ∪B).
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Proposition-Definition 7.4.3: If the natural density of A

γ(A) := lim
x!∞

∣∣{p ∈ A | Nm(p) ⩽ x}
∣∣∣∣{p ∈ P | Nm(p) ⩽ x}
∣∣

exists, so does the Dirichlet density µ(A) and they are equal.

7.5 Primes of absolute degree 1

Definition 7.5.1: The absolute degree of a prime p of OK is the degree of k(p) over
its prime field.

Proposition 7.5.2: The set of primes of absolute degree 1 has Dirichlet density 1.

Proposition 7.5.3: A subset A ⊂ P has a Dirichlet density if and only if the set of
all p ∈ A of absolute degree 1 has a Dirichlet density, and then they are equal.

For any finite galois extension of number fields L/K we let SplitL/K denote the set of
primes p ⊂ OK that are totally split in OL.

Proposition 7.5.4: SplitL/K has Dirichlet density 1
[L/K]

. In particular it is infinite.

Now consider two finite galois extensions of number fields L,L′/K.

Proposition 7.5.5: Then SplitLL′/K = SplitL/K ∩ SplitL′/K .

Proposition 7.5.6: The following are equivalent:

(a) L ⊂ L′.

(b) SplitL′/K ⊂ SplitL/K .

(c) µ(SplitL′/K ∖ SplitL/K) <
1

2[L′/K]
.

Proposition 7.5.7: The following are equivalent:

(a) L = L′.

(b) SplitL′/K and SplitL/K differ only by a set of Dirichlet density 0.

In particular, a number field K that is galois over Q is uniquely determined by the set
of rational primes p that split totally in K.

7.6 Dirichlet L-series

Definition 7.6.1: (a) A homomorphism χ : (Z/NZ)× ! C× is called a Dirichlet
character of modulus N ⩾ 1.

(b) The conductor of such χ is the smallest divisor N ′|N such that χ factors through
a homomorphism (Z/N ′Z)× ! C×.
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(c) Such χ is called primitive if N ′ = N .

(d) Such χ is called principal if N ′ = 1, that is, if χ is the trivial homomorphism.

Convention 7.6.2: Often one identifies a Dirichlet character χ of modulus N with a
function χ : Z ! C by setting

χ(a) :=

{
χ(a mod (N)) if gcd(a,N) = 1,

0 otherwise.

Caution 7.6.3: When the conductor N ′ is smaller than the modulus N , one has to
be somewhat careful with the divisors of N/N ′.

Definition 7.6.4: The Dirichlet L-function associated to any Dirichlet character χ is

L(χ, s) :=
∑
n⩾1

χ(n)n−s.

Proposition 7.6.5: This series converges absolutely and locally uniformly for all
s ∈ C with Re(s) > 1 and defines a holomorphic function there.

Proposition 7.6.6: For all Re(s) > 1 we have the Euler product

L(χ, s) =
∏
p ∤N

(1− χ(p)p−s)−1.

Proposition 7.6.7: If a Dirichlet character χ of modulus N corresponds to a primitive
Dirichlet character χ′ of modulus N ′, then

L(χ′, s) = L(χ, s) ·
∏

p|N, p ∤N ′

(1− χ′(p)p−s)−1.

Proposition 7.6.8: (a) For the principal Dirichlet character χ of modulus 1 we have
L(χ, s) = ζ(s).

(b) For every non-principal Dirichlet character χ the function L(χ, s) extends uniquely
to a holomorphic function on the region Re(s) > 0.

Theorem 7.6.9: The zeta function ζK(s) of the field K := Q(µN) is the product of
the L-functions L(χ, s) for all primitive Dirichlet characters χ of conductor dividing N .

Theorem 7.6.10: For any non-principal Dirichlet character χ we have L(χ, 1) ̸= 0.

Proposition 7.6.11: For any non-principal Dirichlet character χ we have∑
p prime

χ(p)p−s = O(1) for real s ! 1+.

7.7 Primes in arithmetic progressions

Theorem 7.7.1: For any coprime integers a and N ⩾ 1 the set of rational primes
p ≡ a mod (N) has Dirichlet density 1

φ(N)
. In particular it is infinite.
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7.8 Bonus Material: Abelian Artin L-functions

Consider an abelian extension of number fields L/K with Galois group Γ. Then for
any prime q of OL, the decomposition group Γq, the inertia group Iq, and the Frobenius
substitution Frobq depend only on the underlying prime p of OK . We therefore denote
them also by Γp, Ip, Frobp respectively.

Definition 7.8.1: The Artin L-function associated to a homomorphism χ : Γ ! C× is

LK(χ, s) :=
∏
p

χ|Ip=1

(
1− χ(Frobp)Nm(p)−s

)−1
.

Example 7.8.2: In the case K = Q and L = Q(µN) and the usual identification
Γ ∼= (Z/NZ)× the Artin L-function LK(χ, s) is the Dirichlet L-function L(χ, s) for the
primitive Dirichlet character associated to χ.

Proposition 7.8.3: This product converges absolutely and locally uniformly for all
s ∈ C with Re(s) > 1 and defines a holomorphic function there.

Proposition 7.8.4: For the trivial homomorphism χ we have LK(χ, s) = ζK(s).

Proposition 7.8.5: The zeta function ζL(s) is the product of the L-functions LK(χ, s)
for all χ.

Theorem 7.8.6: For every non-trivial χ the function LK(χ, s) extends uniquely to a
holomorphic function on the region Re(s) > 1− 1

[K/Q]
.

(Proof only in the case L = K(µm).)

Theorem 7.8.7: For every non-trivial χ we have LK(χ, 1) ̸= 0.

7.9 Bonus Material: Cebotarev density theorem

Consider an arbitrary Galois extension of number fields L/K with Galois group Γ. For
any γ ∈ Γ we denote the conjugacy class by OΓ(γ) := {δγ | δ ∈ Γ} and let Pγ denote
the set of primes p ⊂ OK that are unramified in OL and whose Frobenius substitution
for some (and equivalently every) q|p lies in OΓ(γ).

Theorem 7.9.1: The set Pγ has the Dirichlet density |OΓ(γ)|
|Γ| .
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15. 12. 2023: Corrected the formula for the regulator in Definition 7.3.1.
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Version of 12.11.2023:

12. 12. 2023: Section 7.8 added and Theorem 7.7.2 moved to Section 7.9.

28. 11. 2023: In Proposition 6.7.4 the condition “L = K(β)” added.

16. 11. 2023: Corrections in Def. 6.4.1 and Props. 6.4.3 and 6.6.6.

Version of 09.11.2023:

09. 11. 2023: Assumption 6.2.1 added and the rest of §6.2 renumbered. As a result of
Assumption 6.2.1 substantial changes in §6.3–4 and reformulations in 6.7.6 and 6.8.4–7.

08. 11. 2023: Corrected Proposition 5.4.5: ε ⩾
√
D+

√
D−4

2
> 1.

07. 11. 2023: Chapter 7 added.

Version of 31.10.2023:

31. 10. 2023: Chapter 6 added.

25. 10. 2023: Corrected
√

| disc(a)| in Proposition 4.2.1.

20. 10. 2023: Corrected Theorem 4.2.2.

18. 10. 2023: Corrected Definition 3.6.4 and two typos in Proposition 4.1.2.

13. 10. 2023: Proposition 3.2.1 and typos in §3.6 corrected.

12. 10. 2023: Theorem 3.6.7 expanded.

11. 10. 2023: Typos in §3.1-4 corrected and items 3.7.1-5 rearranged and renumbered.

Version of 06.10.2023:

6. 10. 2023: Some typos in §2.1–2 corrected and Sections 3.6–7 added.
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