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1 Some commutative algebra

1.1 Integral ring extensions

All rings are assumed to be commutative and unitary. Consider a ring extension A ⊂ B.

Definition 1.1.1: (a) An element b ∈ B is called integral over A if there exists a
monic f ∈ A[X] with f(b) = 0.

(b) The ring B is called integral over A if every b ∈ B is integral over A.

(c) The integral closure of A in B is the set Ã := {b ∈ B | b integral over A}.

Definition-Example 1.1.2: (a) An element z ∈ C is integral over Q if and only if z
is an algebraic number.

(b) An element z ∈ C is integral over Z if and only if z is an algebraic integer.

Proposition 1.1.3: The following statements for an element b ∈ B are equivalent:

(a) b is integral over A.

(b) The subring A[b] ⊂ B is finitely generated as an A-module.

(c) b is contained in a subring of B which is finitely generated as an A-module.

Proposition 1.1.4: (a) For any integral ring extensions A ⊂ B and B ⊂ C the ring
extension A ⊂ C is integral.

(b) The subset Ã is a subring of B that contains A.

(c) The subring Ã is its own integral closure in B.

1.2 Prime ideals

Consider an integral ring extension A ⊂ B.

Proposition 1.2.1: For every prime ideal q ⊂ B the intersection q ∩ A is a prime
ideal of A.

Definition 1.2.2: We say that q lies over q ∩ A.

Theorem 1.2.3: For any prime ideals q ⊂ q′ ⊂ B over the same p we have q = q′.

Theorem 1.2.4: For every prime ideal p ⊂ A there exists a prime ideal q ⊂ B over p.

1.3 Normalization

From now on we assume that A is an integral domain with quotient field K.

Definition 1.3.1: (a) The integral closure of A in K is called the normalization of A.
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(b) The ring A is called normal if this normalization is A.

Proposition 1.3.2: (a) The normalization of A is normal.

(b) Any unique factorization domain is normal.

1.4 Localization

Definition 1.4.1: A subset S ⊂ A∖ {0} is called multiplicative if it contains 1 and is
closed under multiplication.

Definition-Proposition 1.4.2: For any multiplicative subset S ⊂ A the subset

S−1A :=
{

a
s

∣∣ a ∈ A, s ∈ S
}

is a subring of K that contains A and is called the localization of A with respect to S.

Example 1.4.3: For every prime ideal p ⊂ A the subset A∖ p is multiplicative. The
ring Ap := (A∖ p)−1A is called the localization of A at p.

Proposition 1.4.4: For every multiplicative subset S ⊂ A we have:

(a) S−1Ã = S̃−1A.

(b) If A is normal, then so is S−1A.

1.5 Field extensions

In the following we consider a normal integral domain A with quotient field K, and
an algebraic field extension L/K, and let B be the integral closure of A in L.

Proposition 1.5.1: For any homomorphism σ : L ! M of field extensions of K, an
element x ∈ L is integral over A if and only if σ(x) is integral over A.

Proposition 1.5.2: An element x ∈ L is integral over A if and only if the minimal
polynomial of x over K has coefficients in A.

Proposition 1.5.3: We have (A∖ {0})−1B = L.

1.6 Norm and Trace

Assume that L/K is finite separable. Let K̄ be an algebraic closure of K.

Definition 1.6.1: For any x ∈ L we consider the K-linear map Tx : L ! L, u 7! ux.

(a) The norm of x for L/K is the element NmL/K(x) := det(Tx) ∈ K.

(b) The trace of x for L/K is the element TrL/K(x) := tr(Tx) ∈ K.
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Proposition 1.6.2: (a) For any x, y ∈ L we have NmL/K(xy) = NmL/K(x)·NmL/K(y).

(b) The map NmL/K induces a homomorphism L× ! K×.

(c) The map TrL/K : L ! K is K-linear.

Proposition 1.6.3: For any x ∈ L we have

NmL/K(x) =
∏

σ∈HomK(L,K̄)

σ(x) and TrL/K(x) =
∑

σ∈HomK(L,K̄)

σ(x).

Proposition 1.6.4: The map TrL/K : L ! K is non-zero.

Proposition 1.6.5: For any two finite separable field extensions M/L/K we have:

(a) NmL/K ◦NmM/L = NmM/K .

(b) TrL/K ◦TrM/L = TrM/K .

Proposition 1.6.6: For any x ∈ B we have:

(a) NmL/K(x) ∈ A.

(b) NmL/K(x) ∈ A× if and only if x ∈ B×.

(c) TrL/K(x) ∈ A.

1.7 Discriminant

Proposition 1.7.1: The map

L× L −! K, (x, y) 7! TrL/K(x)

is a non-degenerate symmetric K-bilinear form.

Definition 1.7.2: The discriminant of any ordered basis (b1, . . . , bn) of L over K is
the determinant of the associated Gram matrix

disc(b1, . . . , bn) := det
(
TrL/K(bibj)

)
i,j=1,...,n

.

Lemma 1.7.3: Write HomK(L, K̄) = {σ1, . . . , σn} with [L/K] = n and consider the
matrix T := (σi(bj))i,j=1,...,n. Then

T T · T =
(
TrL/K(bibj)

)
i,j=1,...,n

.

Proposition 1.7.4: If L = K(b) and n = [L/K], then disc(1, b, . . . , bn−1) is the
discriminant of the minimal polynomial of b over K.

Proposition 1.7.5: (a) We have disc(b1, . . . , bn) ∈ K×.
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(b) If b1, . . . , bn ∈ B, then disc(b1, . . . , bn) ∈ A∖ {0} and

B ⊂ 1

disc(b1, . . . , bn)
·
(
Ab1 + . . .+ Abn

)
.

Proposition 1.7.6: If A is a principal ideal domain, then:

(a) B is a free A-module of rank [L/K].

(b) For any basis (b1, . . . , bn) of B over A, the number disc(b1, . . . , bn) is independent
of the basis up to the square of an element of A×.

Definition 1.7.7: This number is called the discriminant of B over A or of L over K
and is denoted discB/A or discL/K .

1.8 Linearly disjoint extensions

Definition 1.8.1: Two finite separable field extensions L,L′/K are called linearly
disjoint if L⊗K L′ is a field.

Proposition 1.8.2: For any two finite separable field extensions L,L′/K within a
common overfield M the following statements are equivalent:

(a) L and L′ are linearly disjoint over K.

(b) [LL′/K] = [L/K] · [L′/K]

(c) [LL′/L] = [L′/K]

(d) [LL′/L′] = [L/K]

If at least one of L/K and L′/K is galois, they are also equivalent to

(e) L ∩ L′ = K.

Theorem 1.8.3: Consider linearly disjoint finite separable field extensions L,L′/K.
Assume that A is a principal ideal domain and that d := discL/K and d′ := discL′/K

are relatively prime in A. Let B,B′, B̃ be the integral closures of A in L,L′, LL′. Then:

(a) B ⊗A B′ ∼
! B̃.

(b) discLL′/K = d[L
′/K] · d′[L/K] up to the square of a unit in A.

1.9 Dedekind Rings

Definition 1.9.1: (a) A ring A is noetherian if every ideal is finitely generated.

(b) An integral domain A has Krull dimension 1 if it is not a field and every non-zero
prime ideal is a maximal ideal.

(c) A noetherien normal integral domain of Krull dimension 1 is called a Dedekind
ring.
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Proposition 1.9.2: Any principal ideal domain that is not a field is a Dedekind ring.

Examples 1.9.3: Take A = Z or A = Z[i] or A = k[t] or A = k[[t]] for a field k.

In the following we assume that A ⊂ K is Dedekind and that B ⊂ L is as above.

Proposition 1.9.4: (a) For every multiplicative subset S ⊂ A the ring S−1A is
Dedekind or a field.

(b) For every prime ideal 0 ̸= p ⊂ A the localization Ap is a discrete valuation ring.

Theorem 1.9.5: The ring B is Dedekind and finitely generated as an A-module.

1.10 Fractional Ideals

Definition 1.10.1:

(a) A non-zero finitely generated A-submodule of K is called a fractional ideal of A.

(b) A fractional ideal of the form (x) := Ax for some x ∈ K× is called principal.

(c) The product of two fractional ideals a, b is defined as

ab :=
{∑r

i=1 aibi
∣∣ r ⩾ 0, ai ∈ a bi ∈ b

}
.

(d) The inverse of a fractional ideal a is defined as

a−1 =
{
x ∈ K

∣∣ x · a ⊂ A
}
.

Proposition 1.10.2: For any fractional ideals a, b, c we have:
(a) There exist a, b ∈ A∖ {0} with (a) ⊂ a ⊂ (1

b
).

(b) ab and a−1 are fractional ideals.

(c) ab = ba and (ab)c = a(bc) and (1)a = a.

(d) a ⊂ A if and only if A ⊂ a−1.

Lemma 1.10.3: For every non-zero ideal a ⊂ A there exist an integer r ⩾ 0 and
maximal ideals p1, . . . , pr such that p1 · · · pr ⊂ a.

Lemma 1.10.4: For every maximal ideal p ⊂ A and every fractional ideal a we have
(a) A ⫋ p−1.

(b) a ⫋ p−1a.

(c) p−1p = (1).

Theorem 1.10.5: Any non-zero ideal of A is a product of maximal ideals and the
factors are unique up to permutation. (Unique factorization of ideals)

Theorem 1.10.6: (a) The set JA of fractional ideals is an abelian group with the
above product and inverse and the unit element (1) = A.

(b) The group JA is the free abelian group with basis the maximal ideals of A.
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1.11 Ideals

Consider any non-zero ideals a, b ⊂ A.

Definition 1.11.1: We write b|a and say that b divides a if and only if a ⊂ b.

Proposition 1.11.2: We have b|a if and only if there is a non-zero ideal c ⊂ A with
bc = a.

Proposition 1.11.3: For any a, b ∈ A∖ {0} we have b|a if and only if (b)|(a).

Definition 1.11.4: Ideals a, b ⊂ A with a+ b = A are called coprime.

Proposition 1.11.5: For any non-zero ideals a, b ⊂ A the following are equivalent:

(a) a and b are coprime.

(b) Their factorizations in maximal ideals do not have a common factor.

(c) a ∩ b = ab.

Chinese Remainder Theorem 1.11.6: For any pairwise coprime ideals a1, . . . , ar ⊂
A we have a ring isomorphism

A/a1 · · · ar ∼ // A/a1 × . . .× A/ar,

a+ a1 · · · ar � // (a+ a1, . . . , a+ ar).

Proposition 1.11.7: For any fractional ideals a ⊂ b there exists b ∈ b with b = a+(b).

Proposition 1.11.8: Every fractional ideal of A is generated by 2 elements.

Proposition 1.11.9: For any non-zero ideal a and any fractional ideal b of A there
exists an isomorphism of A-modules A/a ∼= b/ab.

1.12 Ideal class group

Definition 1.12.1: The factor group

Cl(A) :=
{
fractional ideals

} / {
principal ideals

}
is called the ideal class group of A. Its order h(A) := |Cl(A)| is called the class number
of A.

Proposition 1.12.2: Any ideal class is represented by a non-zero ideal of A.

Proposition 1.12.3: There is a fundamental exact sequence

1 // A× // K× // JA // Cl(A) // 1.
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2 Minkowski’s lattice theory

2.1 Lattices

Fix a finite dimensional R-vector space V .

Proposition 2.1.1: There exists a unique topology on V such that for any basis
v1, . . . , vn of V the isomorphism Rn ! V , (xi)i 7!

∑n
i=1 xivi is a homeomorphism.

Definition 2.1.2: A subset X ⊂ V is called ...

(a) ... bounded if and only if the corresponding subset of Rn is bounded.

(b) ... discrete if and only if the corresponding subset of Rn is discrete, that is, if its
intersection with any bounded subset is finite.

Now we are interested in an (additive) subgroup Γ ⊂ V .

Definition-Proposition 2.1.3: The following are equivalent:

(a) Γ is discrete.

(b) Γ =
⊕m

i=1 Zvi for R-linearly independent elements v1, . . . , vm.

Such a subgroup is called a lattice.

Definition-Proposition 2.1.4: The following are equivalent:

(a) Γ is discrete and there exists a bounded subset Φ ⊂ V such that Γ + Φ = V .

(b) Γ is discrete and V/Γ is compact.

(c) Γ =
⊕n

i=1 Zvi for an R-basis v1, . . . , vn of V .

Such a subgroup is called a complete lattice.

In the following we consider a lattice Γ ⊂ V .

Definition 2.1.5: Any measurable subset Φ ⊂ V such that Φ ! V/Γ is bijective is
called a fundamental domain for Γ.

Example 2.1.6: If Γ =
⊕n

i=1 Zvi for an R-basis v1, . . . , vn of V , a fundamental domain
is:

Φ :=
{∑n

i=1 xi

∣∣ ∀i : 0 ⩽ xi < 1
}
.

Caution 2.1.7: If V ̸= 0, there does not exist a compact fundamental domain, because
there is a problem with the boundary.

2.2 Volume

Now we fix a scalar product ⟨ , ⟩ on V .



§2 Lattice Theory Pink: Number Theory 2023/24 Page 10

Proposition 2.2.1: (a) There exists a unique Lebesgue measure dvol on V such that
for any measurable function f on V and any orthonormal basis (e1, . . . , en) of V
we have ∫

V

f(v) dvol(v) =

∫
Rn

f
(∑n

i=1 xiei
)
dx1 . . . dxn.

(b) For any R-basis (v1, . . . , vn) of V we then have

vol
(
{
∑n

i=1 xi

∣∣ ∀i : 0 ⩽ xi < 1}
)

=
√

det
(
⟨xi, xj⟩

)n
i,j=1

and ∫
V

f(v) dvol(v) =

∫
Rn

f
(∑n

i=1 yivi
)
dy1 . . . dyn ·

√
det

(
⟨xi, xj⟩

)n
i,j=1

.

Definition-Proposition 2.2.2: Consider any fundamental domain Φ ⊂ V .
(a) For any measurable function f on V/Γ this integral is independent of Φ:∫

V/Γ

f(v̄) dvol(v̄) :=

∫
Φ

f(v + Γ) dvol(v).

(b) In particular we obtain

vol(V/Γ) :=

∫
V/Γ

1 dvol(v̄) = vol(Φ).

Fact 2.2.3: We have vol(V/Γ) < ∞ if and only if Γ is a complete lattice.

2.3 Lattice Point Theorem

Let Γ be a complete lattice in a finite dimensional euclidean vector space V .

Definition 2.3.1: A subset X ⊂ V is centrally symmetric if and only if

X = −X := {−x | x ∈ X}.

Theorem 2.3.2: Let X ⊂ V be a centrally symmetric convex subset which satisfies

vol(X) > 2dim(V ) · vol(V/Γ).
Then X ∩ Γ contains a non-zero element.

Remark 2.3.3: The theorem is sharp. For example if V = Rn and Γ = Zn and
X =]− 1, 1[n, then we have vol(X) = 2dim(V ) · vol(V/Γ) and X ∩ Γ = {0}.

Application 2.3.4: An n-dimensional ball Br of radius r has volume

vol(Br) =
πn/2

Γ(n
2
+ 1)

· rn.

Therefore the smallest non-zero vector in Γ has length

⩽
2√
π
· n

√
vol(V/Γ) · Γ(n

2
+ 1).

More generally, for every k one can bound the combined lengths of k linearly indepen-
dent vectors in Γ using successive minima.
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3 Algebraic integers

3.1 Number fields

Definition 3.1.1: (a) A finite field extension K/Q is called an (algebraic) number
field.

(b) A number field of degree 2, 3, 4, 5,... is called quadratic, cubic, quartic, quintic,...

(c) The integral closure OK of Z in K is called the ring of algebraic integers in K.

In the rest of this chapter we fix such K and OK and abbreviate n := [L/K].

Proposition 3.1.2: (a) The ring OK is Dedekind.

(c) OK is a free Z-module of rank n.

(b) Any fractional ideal a of OK is a free Z-module of rank n.

3.2 Absolute discriminant

Proposition 3.2.1: (a) For any Z-submodule Γ ⊂ K of rank n with an ordered
Z-basis (x1, . . . , xn) the following value depends only on Γ:

disc(Γ) := disc(x1, . . . , xn) ∈ Z ∖ {0}.

(b) For any two Z-submodules Γ ⊂ Γ′ ⊂ K of rank n the index [Γ′ : Γ] is finite and
we have

disc(Γ) = [Γ′ : Γ]2 · disc(Γ′).

Definition 3.2.2: The number

dK := disc(OK) ∈ Z ∖ {0}

is called the discriminant of OK or of K.

Corollary 3.2.3: If there exist a1, . . . , an ∈ OK such that disc(a1, . . . , an) is squarefree,
then

OK = Za1 ⊕ . . .⊕ Zan.

3.3 Absolute norm

Definition 3.3.1: The absolute norm of a non-zero ideal a ⊂ OK is the index

Nm(a) := [OK : a] ∈ Z⩾1.

Proposition 3.3.2: For any a ∈ A∖ {0} we have Nm((a)) = |NmK/Q(a)|.
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Proposition 3.3.3: For any integer N ⩾ 1 there exist only finitely many non-zero
ideals a ⊂ OK with Nm(a) ⩽ N .

Proposition 3.3.4: For any two non-zero ideals a, b ⊂ OK we have

Nm(ab) = Nm(a) · Nm(b).

Let JK denote the group of fractional ideals of OK .

Corollary 3.3.5: The absolute norm extends to a unique homomorphism

Nm: JK −! (Q>0, ·).

3.4 Real and complex embeddings

Throughout the following we abbreviate Σ := HomQ(K,C).

Proposition 3.4.1: We have r + 2s = n.

Proposition 3.4.2: We have ring isomorphisms

K ⊗Q C ∼ //

∪
KC :=

∏
σ∈Σ C,

∪
K ⊗Q R ∼ // KR :=

{
(zσ)σ ∈ KC

∣∣ ∀σ ∈ Σ: zσ̄ = z̄σ
}
.

x⊗ z � // (σ(x)z)σ.

The map x 7! x⊗ 1 induces an embdding j : K ↪! KR.

Proposition 3.4.3: For every fractional ideal a of OK the image j(a) is a complete
lattice in KR.

To describe this with more explicit coordinates we set

r := the number σ ∈ Σ with σ(K) ⊂ R,
s := the number σ ∈ Σ with σ(K) ̸⊂ R up to complex conjugation.

We let σ1, . . . , σr be the real embeddings by and σr+1, . . . , σn the non-real embeddings
such that σ̄r+j = σ̄r+j+s for all 1 ⩽ j ⩽ s.

Proposition 3.4.4: We have an isomorphism of R-vector spaces

KR
∼

−! Rn, (zσ)σ 7−!
(
zσ1 , . . . , zσr ,Re zσr+1 , . . . ,Re zσr+s , Im zσr+1 , . . . , Im zσr+s

)
.
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3.5 Quadratic number fields

Proposition 3.5.1: The quadratic number fields are precisely the splitting fields of
the poiynomials X2 − d for all squarefree integers d ∈ Z ∖ {0, 1}.

Convention 3.5.2: For any positive integer d we let
√
d be the positive real square

root of d. For any negative integer d we uncanonically choose a square root
√
d in iR.

Proposition 3.5.2: For d as above and K = Q(
√
d) we have

OK =

{ Z[
√
d ] if d ≡ 2, 3 mod (4),

Z[1+
√
d

2
] if d ≡ 1 mod (4)

and

dK =

{
4d if d ≡ 2, 3 mod (4),
d if d ≡ 1 mod (4)

Corollary 3.5.4: The integer d is uniquely determined by K, namely as the squarefree
part of dK .

Remark 3.5.5: The possible discriminants of quadratic number fields are sometimes
called fundamental discriminants. As the discriminant is somewhat more canonically
associated to K than the number d, some authors prefer to write K = Q(

√
dK).

Definition 3.5.6: We have the following cases:

(a) If d > 0, there exist precisely two distinct embeddings σ1, σ2 : K ↪! R and we
call K real quadratic. In this case we obtain a natural embedding

(σ1, σ2) : K ↪−! R2.

(b) If d < 0, there exist precisely two distinct embeddings σ, σ̄ : K ↪! C that are
conjugate under complex conjugation, and we call K imaginary quadratic. In
this case we obtain a natural embedding

σ : K ↪−! C.
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4 Additive Minkowski theory

4.1 Euclidean embedding

We endow KC := CΣ with the standard hermitian scalar product〈
(zσ)σ, (wσ)σ

〉
:=

∑
σ∈Σ

z̄σwσ.

Proposition 4.1.1: Its restriction to KR ×KR has values in R and turns KR into a
euclidean vector space.

Proposition 4.1.2: Under the isomorphism of Proposition 3.4.2 this scalar product
on KR corresponds to the following scalar product on Rn:

〈
(xj)j, (yj)j

〉
:=

r∑
i=1

xjyj +
n∑

i=r+1

2xjyj.

4.2 Lattice bounds

Proposition 4.2.1: For any fractional ideal a of OK we have

vol(KR/j(a)) =
√

disc(a) = Nm(a) ·
√

|dK |.

Theorem 4.2.2: Consider a fractional ideal a of OK and positive real numbers cσ for
all σ ∈ Σ such that ∏

σ∈Σ

cσ > ( 2
π
)s ·

√
|dK | · Nm(a).

Then there exists an element a ∈ a∖ {0} with the property

∀σ ∈ Σ: |σ(a)| < cσ.

4.3 Finiteness of the class group

Theorem 4.3.1: For any fractional ideal a of OK there exists an element a ∈ a∖ {0}
with

|NmK/Q(a)| ⩽ ( 2
π
)s ·

√
|dK | · Nm(a).

Proposition 4.3.2: Every ideal class in Cl(OK) contains an ideal a ⊂ OK with

Nm(a) ⩽ ( 2
π
)s ·

√
|dK |.

Theorem 4.3.3: The class group Cl(OK) is finite.
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4.4 Discriminant bounds

Theorem 4.4.1: For any n and c there exist at most finitely many number fields K/Q
of degree n and with |dK | ⩽ c.

Theorem 4.4.2: For any number field K of degree n over Q we have√
|dK | ⩾

nn

n!
·
(π
4

)n/2

.

Theorem 4.4.3: (Hermite) For any c there exist at most finitely many number fields
K/Q with |dK | ⩽ c.

Theorem 4.4.4: (Minkowski) For any number field K ̸= Q we have |dK | > 1.
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5 Multiplicative Minkowski theory

5.1 Roots of unity

Lemma 5.1.1: We have a short exact sequence

1 // (S1)Σ // K×
C = (C×)Σ ℓ // RΣ // 0,

(zσ)σ
� // (log |zσ|)σ.

Let µ(K) denote the group of elements of finite order in K×.

Proposition 5.1.2: The group µ(K) is a finite subgroup of O×
K and we have a short

exact sequence

1 // µ(K) // O×
K

// Γ := ℓ(O×
K)

// 0.

Proposition 5.1.3: The group µ(K) is cyclic of even order.

Example 5.1.4: For any squarefree d ∈ Z ∖ {1} we have

µ(Q(
√
d)) =

{ cyclic of order 6 if d = −3,
cyclic of order 4 if d = −1,
cyclic of order 2 otherwise.

5.2 Units

Lemma 5.2.1: The group Γ is a lattice in RΣ.

Consider the homomorphisms

Nm: K×
C = (C×)Σ // C×, (zσ)σ

� //
∏

σ∈Σ zσ

Tr: (R×)Σ // R, (tσ)σ
� //

∑
σ∈Σ tσ

Lemma 5.2.2: We have a commutative diagram

O×
K
� � //

Nm
��

K× � � j //

Nm
��

(KC)
× ℓ // //

Nm
��

RΣ

Tr

��
{±1} � � // Q× � � // C× log | | // // R

Consider the R-subspaces

(RΣ)+ :=
{
(tσ)σ ∈ RΣ

∣∣ ∀σ : tσ̄ = tσ
}
,

H := ker
(
Tr: (RΣ)+ ! R.

Lemma 5.2.3: We have Γ ⊂ H and dimR(H) = r + s− 1.
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5.3 Dirichlet’s unit theorem

Theorem 5.3.1: The group Γ is a complete lattice in H.

Theorem 5.3.2: The group O×
K is isomorphic to µ(K)× Zr+s−1.

Caution 5.3.3: The isomorphism is uncanonical.

Corollary 5.3.4: The group O×
K is finite if and only if K is Q or imaginary quadratic.

Corollary 5.3.5: The group O×
K has Z-rank 1 if and only if (r, s) ∈

{
(2, 0), (1, 1), (0, 2)

}
.

In that case we have
O×

K = µ(K)× εZ

for some unit ε of infinite order.

Definition 5.3.6: Any choice of such ε is then called a fundamental unit.

5.4 The real quadratic case

Suppose that K = Q(
√
d) for a squarefree d > 1 and choose an embedding K ↪! R.

Fact 5.4.1: There is a unique choice of fundamental unit ε > 1.

Proposition 5.4.2: If OK = Z[
√
d], then

(a) O×
K =

{
a+ b

√
d
∣∣ a, b ∈ Z, a2 − b2d = ±1

}
.

(b) O×
K ∩ R>1 =

{
a+ b

√
d
∣∣ a, b ∈ Z, a2 − b2d = ±1, a, b > 0

}
.

(c) The fundamental unit ε > 1 is the element a + b
√
d ∈ O×

K ∩ R>1 as in (b) with
the smallest value for a, or equivalently for b.

Theorem 5.4.3: For any squarefree integer d > 1 there are infinitely many solutions
(a, b) ∈ Z2 of the diophantine equation a2 − b2d = 1.

Remark 5.4.4: The equation a2−b2d = −1 may or may not have a solution (a, b) ∈ Z2.

Proposition 5.4.5: The fundamental unit ε > 1 of K with discriminant D satisfies

ε >

√
D +

√
D − 4

2
> 1.

Consequently, if some unit of infinite order u > 1 is known, we have u = εk for some
1 ⩽ k ⩽ log(u)/ log((

√
D +

√
D − 4)/2) and one can efficiently find ε.

Remark 5.4.6: One can effectively find ε using continued fractions.
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