Exercise sheet 1

1. (a) Give some concrete examples to show that Cauchy's Theorem does not hold for subsets of $\mathbf{Z} / q \mathbf{Z}$ in general, if $q \geqslant 1$ is arbitrary (i.e., find examples of q and A, B non-empty subsets of $\mathbf{Z} / q \mathbf{Z}$ such that $|A+B|<\min (q,|A|+|B|-1)$.)
(b) Let $q \geqslant 1$ be a positive integer, let $A \subset \mathbf{Z} / q \mathbf{Z}$ be any subset and let $B \subset \mathbf{Z} / q \mathbf{Z}$ be such that $0 \in B$. Show that

$$
|A+B| \geqslant \min \left(q,|A|+\left|B^{\times}\right|-1\right),
$$

where B^{\times}is the set of elements of B which are invertible in $\mathbf{Z} / q \mathbf{Z}$ (i.e., those $b \in B$ which are residue classes of integers coprime to q).
2. Let $q \geqslant 1$ and $k \geqslant 1$ be integers. Let $A \subset \mathbf{Z} / q \mathbf{Z}$ be a non-empty set, and let $A^{(k)}=A+\cdots+A$ (with k-summands) be the set of elements of the form $a_{1}+\cdots+a_{k}$ with $a_{i} \in A$. For $x \in \mathbf{Z} / q \mathbf{Z}$, define

$$
r_{k}(x)=\left|\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k} \mid a_{1}+\cdots+a_{k}=x\right\}\right| .
$$

(a) Show that

$$
r_{k}(x)=\frac{|A|^{k}}{q}+\frac{1}{q} \sum_{1 \leqslant h<q} W_{A}(h)^{k} e\left(\frac{h x}{q}\right)
$$

where

$$
W_{A}(h)=\sum_{a \in A} e\left(-\frac{a h}{q}\right) .
$$

(b) For $k \geqslant 2$, deduce that

$$
r_{k}(x) \geqslant \frac{|A|^{k}}{q}-|A| \sup _{h \neq 0}\left|W_{A}(h)\right|^{k-2} .
$$

(c) Assume there exists $\delta>0$ such that $\left|W_{A}(h)\right| \leqslant q^{\delta}$ for all h. Assuming $k \geqslant 2$, show that $A^{(k)}=\mathbf{Z} / q \mathbf{Z}$ if

$$
|A|>q^{\frac{1+(k-2) \delta}{k-1}}
$$

3. Let p be an odd prime number, and let Q be the set of non-zero squares in $\mathbf{Z} / p \mathbf{Z}$. It has $(p-1) / 2$ elements.
(a) If $p \equiv 3 \bmod 4$, show that $Q+Q \neq \mathbf{Z} / p \mathbf{Z}$.

For $h \in \mathbf{Z} / p \mathbf{Z}$, denote

$$
W(h)=\sum_{x \in Q} e\left(\frac{h x}{p}\right) .
$$

(b) Show that

$$
W(h)=\frac{1}{2} \sum_{x \in \mathbf{Z} / p \mathbf{Z}} e\left(\frac{h x^{2}}{p}\right)-\frac{1}{2} .
$$

(c) Show that

$$
\left|\sum_{x \in \mathbf{Z} / p \mathbf{Z}} e\left(\frac{h x^{2}}{p}\right)\right|^{2}=\sum_{u \in \mathbf{Z} / p \mathbf{Z}} \sum_{v \in \mathbf{Z} / p \mathbf{Z}} e\left(\frac{h u v}{p}\right)
$$

(d) Deduce that

$$
|W(h)| \leqslant \frac{1}{2}(\sqrt{p}+1) \leqslant \sqrt{p}
$$

for all $h \neq 0$.
4. Let $q \geqslant 1$ be an integer and let $\alpha \in] 0,1[$ be a real numnber. We define a random subset A of $\mathbf{Z} / q \mathbf{Z}$ by the condition that each $x \in \mathbf{Z} / q \mathbf{Z}$ (independently) belongs to A with probability α.
(a) For any subset $X \subset \mathbf{Z} / q \mathbf{Z}$, show that

$$
\mathbf{P}(A=X)=\alpha^{|X|}(1-\alpha)^{q-|X|}
$$

(b) Show that the average of the size of A is equal to $q \alpha$, or in other words

$$
\mathbf{E}(|A|)=q \alpha
$$

(c) For any $h \in \mathbf{Z} / q \mathbf{Z}-\{0\}$, show that

$$
\mathbf{E}\left(\left|\sum_{x \in A} e\left(\frac{h x}{q}\right)\right|^{2}\right)=q \alpha
$$

