D-MATH Prof. Emmanuel Kowalski

Exercise sheet 1

- 1. (a) Give some concrete examples to show that Cauchy's Theorem does not hold for subsets of $\mathbf{Z}/q\mathbf{Z}$ in general, if $q \ge 1$ is arbitrary (i.e., find examples of q and A, B non-empty subsets of $\mathbf{Z}/q\mathbf{Z}$ such that $|A + B| < \min(q, |A| + |B| 1)$.)
 - (b) Let $q \ge 1$ be a positive integer, let $A \subset \mathbf{Z}/q\mathbf{Z}$ be any subset and let $B \subset \mathbf{Z}/q\mathbf{Z}$ be such that $0 \in B$. Show that

$$|A+B| \ge \min(q, |A|+|B^{\times}|-1),$$

where B^{\times} is the set of elements of B which are invertible in $\mathbb{Z}/q\mathbb{Z}$ (i.e., those $b \in B$ which are residue classes of integers coprime to q).

2. Let $q \ge 1$ and $k \ge 1$ be integers. Let $A \subset \mathbf{Z}/q\mathbf{Z}$ be a non-empty set, and let $A^{(k)} = A + \cdots + A$ (with k-summands) be the set of elements of the form $a_1 + \cdots + a_k$ with $a_i \in A$. For $x \in \mathbf{Z}/q\mathbf{Z}$, define

$$r_k(x) = |\{(a_1, \dots, a_k) \in A^k \mid a_1 + \dots + a_k = x\}|.$$

(a) Show that

$$r_k(x) = \frac{|A|^k}{q} + \frac{1}{q} \sum_{1 \le h < q} W_A(h)^k e\left(\frac{hx}{q}\right)$$

where

$$W_A(h) = \sum_{a \in A} e\left(-\frac{ah}{q}\right).$$

(b) For $k \ge 2$, deduce that

$$r_k(x) \ge \frac{|A|^k}{q} - |A| \sup_{h \ne 0} |W_A(h)|^{k-2}.$$

(c) Assume there exists $\delta > 0$ such that $|W_A(h)| \leq q^{\delta}$ for all h. Assuming $k \geq 2$, show that $A^{(k)} = \mathbf{Z}/q\mathbf{Z}$ if

$$|A| > q^{\frac{1+(k-2)\delta}{k-1}}.$$

3. Let p be an odd prime number, and let Q be the set of non-zero squares in $\mathbb{Z}/p\mathbb{Z}$. It has (p-1)/2 elements.

Bitte wenden.

(a) If $p \equiv 3 \mod 4$, show that $Q + Q \neq \mathbf{Z}/p\mathbf{Z}$.

For $h \in \mathbf{Z}/p\mathbf{Z}$, denote

$$W(h) = \sum_{x \in Q} e\left(\frac{hx}{p}\right).$$

(b) Show that

$$W(h) = \frac{1}{2} \sum_{x \in \mathbf{Z}/p\mathbf{Z}} e\left(\frac{hx^2}{p}\right) - \frac{1}{2}.$$

(c) Show that

$$\left|\sum_{x\in\mathbf{Z}/p\mathbf{Z}}e\left(\frac{hx^2}{p}\right)\right|^2 = \sum_{u\in\mathbf{Z}/p\mathbf{Z}}\sum_{v\in\mathbf{Z}/p\mathbf{Z}}e\left(\frac{huv}{p}\right).$$

(d) Deduce that

$$|W(h)| \leq \frac{1}{2}(\sqrt{p}+1) \leq \sqrt{p}$$

for all $h \neq 0$.

- 4. Let $q \ge 1$ be an integer and let $\alpha \in]0,1[$ be a real number. We define a random subset A of $\mathbb{Z}/q\mathbb{Z}$ by the condition that each $x \in \mathbb{Z}/q\mathbb{Z}$ (independently) belongs to A with probability α .
 - (a) For any subset $X \subset \mathbf{Z}/q\mathbf{Z}$, show that

$$\mathbf{P}(A = X) = \alpha^{|X|} (1 - \alpha)^{q - |X|}.$$

(b) Show that the average of the size of A is equal to $q\alpha$, or in other words

$$\mathbf{E}(|A|) = q\alpha.$$

(c) For any $h \in \mathbf{Z}/q\mathbf{Z} - \{0\}$, show that

$$\mathbf{E}\Big(\Big|\sum_{x\in A} e\Big(\frac{hx}{q}\Big)\Big|^2\Big) = q\alpha.$$