Exercise sheet 1

1. (a) Give some concrete examples to show that Cauchy's Theorem does not hold for subsets of $\mathbf{Z} / q \mathbf{Z}$ in general, if $q \geqslant 1$ is arbitrary (i.e., find examples of q and A, B non-empty subsets of $\mathbf{Z} / q \mathbf{Z}$ such that $|A+B|<\min (q,|A|+|B|-1)$.)
(b) Let $q \geqslant 1$ be a positive integer, let $A \subset \mathbf{Z} / q \mathbf{Z}$ be any subset and let $B \subset \mathbf{Z} / q \mathbf{Z}$ be such that $0 \in B$. Show that

$$
|A+B| \geqslant \min \left(q,|A|+\left|B^{\times}\right|-1\right),
$$

where B^{\times}is the set of elements of B which are invertible in $\mathbf{Z} / q \mathbf{Z}$ (i.e., those $b \in B$ which are residue classes of integers coprime to q).

Solutions.

(a) Let $q=2 n$ for $n \geqslant 2$, and let $A=B+\{0,2, \ldots, 2(n-1)\}$. Observe that $A+B=A$ and $|A+B|=|A|=k$. On the other hand $|A|+|B|-1=2 k-1$ so $|A+B|<|A|+|B|-1<2 n$.
(b) We first observe that $A+B^{\times} \cup\{0\} \subset A+B$ since $B^{\times} \cup\{0\} \subset B$. So, it holds that $|A+B| \geqslant\left|A+B^{\times} \cup\{0\}\right|$ and we can suppose, without loss of generality, that $B=B^{\times} \cup\{0\}$.
To prove the result, we follow the outlines of Cauchy's Theorem's proof. One can assume that $A \neq \mathbf{Z} / q \mathbf{Z}$ and the result holds when $|B|=1$. The argument follows by induction on the size of B. The key point of the proof is that for all $b_{0} \in B \backslash\{0\}$ there exists $a_{0} \in A$ such that $b_{0}+a_{0} \notin A$. If such an element a_{0} didn't exist then, for all $k \in \mathbf{Z}$, it would follow that $k b_{0}+a_{0} \in A$. Since b_{0} is invertible, any $n \in \mathbf{Z} / q \mathbf{Z}$ could be written as

$$
n=\left(n-a_{0}\right) b_{0}^{-1} \cdot b_{0}+a+0,
$$

which is a contradiction since $A \neq \mathbf{Z} / q \mathbf{Z}$. The rest of the proof follows as in the proof of Cauchy's Theorem.
2. Let $q \geqslant 1$ and $k \geqslant 1$ be integers. Let $A \subset \mathbf{Z} / q \mathbf{Z}$ be a non-empty set, and let $A^{(k)}=A+\cdots+A$ (with k-summands) be the set of elements of the form $a_{1}+\cdots+a_{k}$ with $a_{i} \in A$. For $x \in \mathbf{Z} / q \mathbf{Z}$, define

$$
r_{k}(x)=\left|\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k} \mid a_{1}+\cdots+a_{k}=x\right\}\right| .
$$

(a) Show that

$$
r_{k}(x)=\frac{|A|^{k}}{q}+\frac{1}{q} \sum_{1 \leqslant h<q} W_{A}(h)^{k} e\left(\frac{h x}{q}\right)
$$

where

$$
W_{A}(h)=\sum_{a \in A} e\left(-\frac{a h}{q}\right) .
$$

(b) For $k \geqslant 2$, deduce that

$$
r_{k}(x) \geqslant \frac{|A|^{k}}{q}-|A| \sup _{h \neq 0}\left|W_{A}(h)\right|^{k-2} .
$$

(c) Assume there exists $\delta>0$ such that $\left|W_{A}(h)\right| \leqslant q^{\delta}$ for all h. Assuming $k \geqslant 2$, show that $A^{(k)}=\mathbf{Z} / q \mathbf{Z}$ if

$$
|A|>q^{\frac{1+(k-2) \delta}{k-1}} .
$$

Solutions.

(a) We expand $r_{k}(x)$ in the orthogonal character basis. Observe that

$$
\begin{aligned}
<r_{k}, e\left(\frac{h}{q} \cdot\right)> & =\frac{1}{q} \sum_{1 \leqslant n \leqslant q} r_{k}(n) e\left(-\frac{h n}{q}\right) \\
& =\frac{1}{q} \sum_{1 \leqslant n \leqslant q} \sum_{\substack{\left(a_{1}, \ldots, a_{k}\right) \in A^{k} \\
a_{1}+\ldots a_{k}=n}} e\left(-\frac{h n}{q}\right) \\
& =\frac{1}{q} \sum_{\left(a_{1}, \ldots a_{k}\right) \in A^{k}} e\left(\frac{-h\left(a_{1}+\ldots+a_{k}\right)}{q}\right) \cdot \sum_{\substack{1 \leqslant n \leqslant q \\
n=a_{1}+\ldots+a_{k}}} 1 \\
& =\frac{1}{q}\left(\sum_{a \in A} e\left(-\frac{h a}{q}\right)\right)^{k} .
\end{aligned}
$$

For $h \neq 0$, the sum above is equal to $W_{A}(h)^{k}$ and for $h=0$ it is equal to $|A|^{k} / q$. Thus,

$$
r_{k}(x)=\frac{|A|^{k}}{q}+\frac{1}{q} \sum_{1 \leqslant h<q} W_{A}(h)^{k} e\left(\frac{h x}{q}\right) .
$$

(b) Observe that, since $k \geqslant 2$, it holds that

$$
r_{k}(x) \geqslant \frac{|A|^{k}}{q}-\sup _{h \neq 0}\left|W_{A}(h)\right|^{k-2} \sum_{1 \leqslant h<q}\left|W_{A}(h)\right|^{2} .
$$

To conclude, we observe that

$$
\begin{gathered}
\sum_{1 \leqslant h<q}\left|W_{A}(h)\right|^{2} \leqslant \sum_{1 \leqslant h \leqslant}\left|W_{A}(h)\right|^{2}=\sum_{1 \leqslant h \leqslant q} \sum_{a, b \in A} e\left(\frac{h(b-a)}{q}\right) \\
\sum_{a, b \in A} \sum_{1 \leqslant h \leqslant q} e\left(\frac{h(b-a)}{q}\right),
\end{gathered}
$$

and the inner sum is non zero if and only if $b-a \neq 0$, so

$$
\sum_{a, b \in A} \sum_{1 \leqslant h \leqslant q} e\left(\frac{h(b-a)}{q}\right) \sum_{a \in A} q=q|A|,
$$

concluding the proof.
(c) It suffices to prove that $r_{k}(x)>0 \forall x \in \mathbf{Z} / q \mathbf{Z}$. From the previous items, this follows in case

$$
\frac{|A|^{k}}{q}-|A| \sup _{h \neq 0}\left|W_{A}(h)\right|^{k-2}>0 \Leftrightarrow|A|^{k-1}>q \sup _{h \neq 0}\left|W_{A}(h)\right|^{k-2} .
$$

Since $\left|W_{A}(h)\right| \leqslant q^{\delta}$ the result holds whenenver

$$
|A|^{k-1}>q^{1+(k-2) \delta}
$$

which is one of the hypothesis.
3. Let p be an odd prime number, and let Q be the set of non-zero squares in $\mathbf{Z} / p \mathbf{Z}$. It has $(p-1) / 2$ elements.
(a) If $p \equiv 3 \bmod 4$, show that $Q+Q \neq \mathbf{Z} / p \mathbf{Z}$.

For $h \in \mathbf{Z} / p \mathbf{Z}$, denote

$$
W(h)=\sum_{x \in Q} e\left(\frac{h x}{p}\right) .
$$

(b) Show that

$$
W(h)=\frac{1}{2} \sum_{x \in \mathbf{Z} / p \mathbf{Z}} e\left(\frac{h x^{2}}{p}\right)-\frac{1}{2} .
$$

(c) Show that

$$
\left|\sum_{x \in \mathbf{Z} / p \mathbf{Z}} e\left(\frac{h x^{2}}{p}\right)\right|^{2}=\sum_{u \in \mathbf{Z} / p \mathbf{Z}} \sum_{v \in \mathbf{Z} / p \mathbf{Z}} e\left(\frac{h u v}{p}\right) .
$$

(d) Deduce that

$$
|W(h)| \leqslant \frac{1}{2}(\sqrt{p}+1) \leqslant \sqrt{p}
$$

for all $h \neq 0$.

Solution.

(a) We prove that if $p \equiv 3 \bmod 4$ then $0 \not \equiv x^{2}+y^{2} \bmod p$ for all $x, y \in \mathbf{Z} / p \mathbf{Z}$. Suppose that there are x, y such that $0 \equiv x^{2}+y^{2} \bmod p$. Then $\left(y^{-1} x\right)^{2} \equiv$ $-1 \bmod p$. But we can prove that such an element $w=y^{-1} x$ cannot exists. Indeed, from Fermat's Little Theorem, $w^{p-1} \equiv 1 \bmod p$. Thus

$$
1 \equiv w^{p-1} \equiv\left(w^{2}\right)^{\frac{p-1}{2}} \equiv(-1)^{\frac{p-1}{2}} \equiv-1 \bmod p
$$

which is a contradiction.
(b) Observe that for every $y \in \mathbf{Z} / p \mathbf{Z}$ it holds that $y^{2} \equiv(p-y)^{2} \bmod p$ and $y \not \equiv p-y \bmod p$. On the otherhand, since $|Q|=\frac{p-1}{2}$, we get that

$$
p-1=\sum_{x \in Q}\left|y \in \mathbf{Z} / p \mathbf{Z} \backslash\{0\}: y^{2}=x\right| \geqslant 2 \cdot \frac{p-1}{2}
$$

so the last inequality has to be an equality, and we conclude that running through all $x \in \mathbf{Z} / p \mathbf{Z} \backslash\{0\}$ we will obtain every $y \in Q$ exactly twice.

$$
W(h)=\frac{1}{2} \sum_{x \in \mathbf{Z} / p \mathbf{Z} \backslash\{0\}} e\left(\frac{h x^{2}}{p}\right)=\frac{1}{2} \sum_{x \in \mathbf{Z} / p \mathbf{Z}} e\left(\frac{h x^{2}}{p}\right)-\frac{1}{2} .
$$

(c) Observe that

$$
\begin{aligned}
\left|\sum_{x \in \mathbf{Z} / p \mathbf{Z}} e\left(\frac{h x^{2}}{p}\right)\right|^{2}= & \sum_{x, y \in \mathbf{Z} / p \mathbf{Z}} e\left(\frac{h\left(x^{2}-y^{2}\right)}{p}\right) \\
& \sum_{x, y \in \mathbf{Z} / p \mathbf{Z}} e\left(\frac{h(x+y)(x-y))}{p}\right) \\
= & \sum_{u \in \mathbf{Z} / p \mathbf{Z}} \sum_{v \in \mathbf{Z} / p \mathbf{Z}} e\left(\frac{h u v}{p}\right),
\end{aligned}
$$

where in the last equality we changed variables $x+y=u$ and $x-y=v$.
(d) We observe that

$$
\sum_{u \in \mathbf{Z} / p \mathbf{Z}} \sum_{v \in \mathbf{Z} / p \mathbf{Z}} e\left(\frac{h u v}{p}\right)=p
$$

since the inequality is non-zero if and only if $u=0$ or $v=0$. Thus, using the previous item, we conclude that

$$
\left|\sum_{x \in \mathbf{Z} / p \mathbf{Z}} e\left(\frac{h x^{2}}{p}\right)\right|=\sqrt{p}
$$

Together with the expression in item b) and triangle inequality, we conclude the result.
4. Let $q \geqslant 1$ be an integer and let $\alpha \in] 0,1[$ be a real numnber. We define a random subset A of $\mathbf{Z} / q \mathbf{Z}$ by the condition that each $x \in \mathbf{Z} / q \mathbf{Z}$ (independently) belongs to A with probability α.
(a) For any subset $X \subset \mathbf{Z} / q \mathbf{Z}$, show that

$$
\mathbf{P}(A=X)=\alpha^{|X|}(1-\alpha)^{q-|X|}
$$

(b) Show that the average of the size of A is equal to $q \alpha$, or in other words

$$
\mathbf{E}(|A|)=q \alpha
$$

(c) For any $h \in \mathbf{Z} / q \mathbf{Z}-\{0\}$, show that

$$
\mathbf{E}\left(\left|\sum_{x \in A} e\left(\frac{h x}{q}\right)\right|^{2}\right)=q \alpha
$$

Solution.
(a) Let $X=\left\{x_{1}, \ldots, x_{|X|}\right\}$ and $\mathbf{Z} / q \mathbf{Z} \backslash X=\left\{y_{1}, \ldots y_{q-|X|}\right\}$ and observe that

$$
\mathbf{P}(A=X)=\prod_{i=1}^{|X|} \mathbf{P}\left(x_{i} \in X\right) \prod_{j=1}^{q-|X|} \mathbf{P}\left(y_{j} \in X\right)=\alpha^{|X|}(1-\alpha)^{q-|X|}
$$

(b)

$$
\begin{aligned}
\mathbf{E}(|A|) & =\sum_{i=1}^{q} i \cdot \mathbf{P}(|A|=i)=\sum_{i=1}^{q} i \sum_{\substack{X \subset \mathbf{Z} / q \mathbf{Z} \\
|X|-i}} \mathbf{P}(A=X) \\
& =\sum_{i=1}^{q} i \alpha^{1}(1-\alpha)^{q-i} \sum_{\substack{X \subset \mathbf{Z} / q \mathbf{Z} \\
|X|-i}} 1 \\
& =\sum_{i=1}^{q} i \alpha^{i}(1-\alpha)^{q-i}\binom{q}{i}=\sum_{i=0}^{q-1}(i+1) \alpha^{i+1}(1-\alpha)^{q-i-1}\binom{q}{i+1} \\
& =\alpha q \sum_{i=0}^{q-1} \alpha^{i}(1-\alpha)^{q-1-i}\binom{q-1}{i}
\end{aligned}
$$

and the inner sum is the binomial identity for $(\alpha+1-\alpha)^{q-1}=1$.
(c)

$$
\begin{aligned}
\mathbf{E}\left(\left|\sum_{x \in A} e\left(\frac{h x}{q}\right)\right|^{2}\right) & =\sum_{i=1}^{q} \sum_{\substack{X \subset \mathbf{Z} / q \mathbf{Z} \\
|X|=i}}\left|\sum_{x \in X} e\left(\frac{h x}{q}\right)\right|^{2} \mathbf{P}(A=X) \\
& =\sum_{i=1}^{q} \sum_{\substack{X \subset \mathbf{Z} / q \mathbf{Z} \\
|X|=i}} \alpha^{i}(1-\alpha)^{q-i} \sum_{x, y \in X} e\left(\frac{h(x-y)}{q}\right) \\
& =\sum_{i=2}^{q} \alpha^{i}(1-\alpha)^{q-i} \sum_{x \neq y \in \mathbf{Z} / q \mathbf{Z}} e\left(\frac{h(x-y)}{q}\right) \sum_{\substack{X \subset \mathbf{Z} / q \mathbf{Z} \\
|X|=i \\
x \neq y \in X}} 1 \\
& +\sum_{i=1}^{q} \alpha^{i}(1-\alpha)^{q-i} \sum_{x \in \mathbf{Z} / q \mathbf{Z}} 1 \sum_{\substack{x \subset \mathbf{Z} / q \mathbf{Z} \\
| |=i \\
x \in X}} 1 .
\end{aligned}
$$

We observe that

$$
\sum_{\substack{x \subset \mathbf{Z} / q \mathbf{Z} \\|X|=i \\ x \neq y \in X}} 1=\binom{q-2}{i-2}
$$

is independent of x, y, thus

$$
\sum_{i=2}^{q} \alpha^{i}(1-\alpha)^{q-i} \sum_{x \neq y \in \mathbf{Z} / q \mathbf{Z}} e\left(\frac{h(x-y)}{q}\right) \sum_{\substack{X \subset \mathbf{Z} / q \mathbf{Z} \\|X|=i \\ x \neq y \in X}} 1=0
$$

We conclude that

$$
\begin{aligned}
\mathbf{E}\left(\left|\sum_{x \in A} e\left(\frac{h x}{q}\right)\right|^{2}\right) & =\sum_{i=1}^{q} \alpha^{i}(1-\alpha)^{q-i} \sum_{x \in \mathbf{Z} / q \mathbf{Z}} 1 \sum_{\substack{x \subset \mathbf{Z} / q \mathbf{Z} \\
|X|=i \\
x \in X}} 1 \\
& =q \sum_{i=1}^{q} \alpha^{i}(1-\alpha)^{q-i}\binom{q-1}{i-1} \\
& =q \alpha \sum_{i=0}^{q-1} \alpha^{i}(1-\alpha)^{q-1-i}\binom{q-1}{i}
\end{aligned}
$$

where the inner sum is equal to 1 because it is the binomial representation of $(\alpha+1-\alpha)^{q-1}$.

