Exercise sheet 2

1. Show that if $A_{1} \subset G_{1}$ and $A_{2} \subset G_{2}$ are Sidon sets with $\left|A_{i}\right| \geqslant 2$, then $A_{1} \times A_{2}$ is not a Sidon set in $G_{1} \times G_{2}$.
2. Let G be a finite abelian group. Let $\alpha \in G$ be a fixed element. A subset $A \subset G$ is called a symmetric Sidon set with center α if $A=\alpha-A$ (i.e., for any x in A, the element $\alpha-x$ is also in A) and if the equation

$$
a+b=c+d
$$

with $(a, b, c, d) \in A^{4}$ implies that $a \in\{c, d\}$ or $a+b=\alpha$.
(a) Let E be a field with characteristic different from 3. Prove that the set

$$
A=\left\{\left(x, x^{3}\right) \mid x \in E\right\} \subset E \times E
$$

is a symmetric Sidon set with center 0 .
(b) Prove that if $A \subset G$ is a symmetric Sidon set, then it contains a subset $A^{\prime} \subset A$ with $\left|A^{\prime}\right| \geqslant(|A|-1) / 2$ such that A^{\prime} is a Sidon set.
(c) Let G be a finite abelian group and $A \subset \widehat{G}$ a finite set of characters of G. If A is a symmetric Sidon set with center α, prove that

$$
\sum_{x \in G}\left|\sum_{\chi \in A} \lambda_{\chi} \chi(x)\right|^{4} \leqslant 3\left(\sum_{\chi \in A}\left|\lambda_{\chi}\right|^{2}\right)^{2} .
$$

3. Let G be an abelian group, denoted additively. For a finite subset $A \subset G$, we denote by $E(A)$ the number of quadruples $(a, b, c, d) \in A^{4}$ such that $a+b=c+d$.
(a) Show that A is a Sidon set in G if and only if $E(A)=2|A|^{2}-|A|$.

The remainder of the exercise shows that a finite set A may satisfy $E(A)=2|A|^{2}+O(|A|)$, but not contain any Sidon subset of size $\sim|A|$. We take $G=\mathbf{Z}$.
(b) Show that for all large integers N, there exists a Sidon set $A \subset\{1, \ldots, N\} \cap 2 \mathbf{Z}$ with $|A| \rightarrow+\infty$ as $N \rightarrow+\infty$.
(c) Consider a Sidon set $A \subset\{1, \ldots, N\} \cap 2 \mathbf{Z}$. Define

$$
A^{\prime}=A \cup\left\{a+N 2^{a+1} \mid a \in A\right\} \cup\left\{a-N 2^{a+1} \mid a \in A\right\} \subset \mathbf{Z}
$$

(d) Show that if $A^{\prime \prime} \subset A^{\prime}$ is a Sidon set, we have $\left|A^{\prime \prime}\right| \leqslant \frac{2}{3}\left|A^{\prime}\right|$.
(e) Let

$$
x_{1}+x_{2}=x_{3}+x_{4},
$$

with

$$
x_{i}=a_{i}+\varepsilon_{i} N 2^{a_{i}+1}, \quad a_{i} \in A, \quad \varepsilon_{i} \in\{-1,0,1\},
$$

Show that $a_{1}+a_{2}=a_{3}+a_{4}$.
(f) Suppose that $a_{1}=a_{3}$, hence $a_{2}=a_{4}$. Show that

$$
\left(\varepsilon_{1}-\varepsilon_{3}\right) 2^{a_{1}}=\left(\varepsilon_{4}-\varepsilon_{2}\right) 2^{a_{2}} .
$$

(g) Deduce that $x_{1}=x_{3}$ if $\varepsilon_{1}=\varepsilon_{3}$ or $\varepsilon_{2}=\varepsilon_{4}$.
(h) Suppose further that $\varepsilon_{1} \neq \varepsilon_{3}$ and $\varepsilon_{2} \neq \varepsilon_{4}$. Show that $a_{1}=a_{2}=a_{3}=a_{4}$ and $\varepsilon_{1}+\varepsilon_{2}=\varepsilon_{3}+\varepsilon_{4}$.
(i) Conclude that if $x_{1} \notin\left\{x_{3}, x_{4}\right\}$, then $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ has one of the forms

$$
\begin{array}{ll}
\left(a+N 2^{a+1}, a-N 2^{a+1}, a, a\right), & \left(a-N 2^{a+1}, a+N 2^{a+1}, a, a\right), \\
\left(a, a, a-N 2^{a+1}, a+N 2^{a+1}\right), & \left(a, a, a+N 2^{a+1}, a-N 2^{a+1}\right),
\end{array}
$$

for some $a \in A$. (Hint: consider the various possibilities for $\left(\varepsilon_{1}, \ldots, \varepsilon_{4}\right)$ for given $\left(\varepsilon_{3}, \varepsilon_{4}\right)$.
(j) Deduce that

$$
E\left(A^{\prime \prime}\right)=2\left|A^{\prime \prime}\right|^{2}+O\left(\left|A^{\prime \prime}\right|\right)
$$

