Exercise sheet 2

1. Show that if $A_{1} \subset G_{1}$ and $A_{2} \subset G_{2}$ are Sidon sets with $\left|A_{i}\right| \geqslant 2$, then $A_{1} \times A_{2}$ is not a Sidon set in $G_{1} \times G_{2}$.
Solution. Since $\left|A_{i}\right| \geqslant 2, i=1,2$, we can take $a_{1} \neq b_{1} \in A_{1}$ and $a_{2} \neq b_{2} \in A_{2}$. Observe that

$$
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}, b_{2}\right)+\left(b_{1}, a_{2}\right)
$$

but $\left(a_{1}, a_{2}\right) \neq\left(a_{1}, b_{2}\right),\left(b_{1}, a_{2}\right)$. Thus $A_{1} \times A_{2}$ is not a Sidon set.
2. Let G be a finite abelian group. Let $\alpha \in G$ be a fixed element. A subset $A \subset G$ is called a symmetric Sidon set with center α if $A=\alpha-A$ (i.e., for any x in A, the element $\alpha-x$ is also in A) and if the equation

$$
a+b=c+d
$$

with $(a, b, c, d) \in A^{4}$ implies that $a \in\{c, d\}$ or $a+b=\alpha$.
(a) Let E be a field with characteristic different from 3. Prove that the set

$$
A=\left\{\left(x, x^{3}\right) \mid x \in E\right\} \subset E \times E
$$

is a symmetric Sidon set with center 0 .
(b) Prove that if $A \subset G$ is a symmetric Sidon set, then it contains a subset $A^{\prime} \subset A$ with $\left|A^{\prime}\right| \geqslant(|A|-1) / 2$ such that A^{\prime} is a Sidon set.
(c) Let G be a finite abelian group and $A \subset \widehat{G}$ a finite set of characters of G. If A is a symmetric Sidon set with center α, prove that

$$
\sum_{x \in G}\left|\sum_{\chi \in A} \lambda_{\chi} \chi(x)\right|^{4} \leqslant 3\left(\sum_{\chi \in A}\left|\lambda_{\chi}\right|^{2}\right)^{2} .
$$

Solution.
(a) First we observe that if $\left(x, x^{3}\right) \in A$ then $\left(-x,-x^{3}\right)=\left(-x,(-x)^{3}\right) \in A$. To conclude that A is a summetric Sidon set, we let $a, b, c, d \in E$ be such that

$$
\begin{gathered}
a+b=c+d \\
a^{3}+b^{3}=c^{3}+d^{3} .
\end{gathered}
$$

Taking the cube of the first equation and subtracting the second one, we get

$$
3 a b(a+b)=3 c d(c+d)
$$

and since E has characteristic different than 3, it holds that

$$
a b(a+b)=c d(c+d) .
$$

If $a+b=0$, there is nothing to prove. If $a+b \neq 0$, then it holds that

$$
\begin{aligned}
a+b & =c+d \\
a b & =c d,
\end{aligned}
$$

and, as we saw in class, this implies that $a \in\{c, d\}$.
(b) Recall that if A is a symmetric Sidon set with center α, it holds that $x \in$ $A \Leftrightarrow \alpha-x \in A$. First we observe that there is at most one element $x \in A$ such that $x=\alpha-x \Rightarrow 2 x=\alpha$. If it exists, we remove it and consider the ordering $A \backslash\{x\}=\left\{x_{1}, \alpha-x_{1}, \ldots, x_{n}, \alpha-x_{n}\right\}$. Let $A^{\prime}=\left\{x_{1}, \ldots x_{n}\right\}$.
First let's prove that A^{\prime} is a Sidon set. Let $a, b, c, d \in A^{\prime}$ satisfying

$$
a+b=c+d .
$$

First, observe that $a+b \neq \alpha$, otherwise we would have $a=\alpha-b$ which is not possible by construction. Thus, since $A^{\prime} \subset A$ and A is a symmetric Sidon set, it holds that $a \in\{c, d\}$ and we conclude that A^{\prime} is a Sidon set.
Since we removed a potential $x=\alpha-x$, and for all $x_{i}, \alpha-x_{i} \in A$ we added exactly one of them, it holds that

$$
\left|A^{\prime}\right| \geqslant(|A|-1) / 2
$$

(c) Opening the sum on the (LSH) we get

$$
\begin{aligned}
& \frac{1}{|G|} \sum_{x \in G} \sum_{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4} \in A} \lambda_{\chi_{1}} \lambda_{\chi_{2}} \overline{\lambda_{\chi_{3}} \lambda_{\chi_{4}} \chi_{1}(x) \chi_{2}(x) \overline{\chi_{3}(x) \chi_{4}(x)}=} \\
& \frac{1}{|G|} \sum_{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4} \in A} \lambda_{\chi_{1}} \lambda_{\chi_{2}} \overline{\lambda_{\chi_{3}} \lambda_{\chi_{4}}} \sum_{x \in G} \chi_{1}(x) \chi_{2}(x) \overline{\chi_{3}(x) \chi_{4}(x)}
\end{aligned}
$$

and observe that from the orthogonality relations in \hat{G} imply the sum inner sum is non-zero if an only if $\chi_{1} \chi_{2}=\chi_{3} \chi_{4}$ and, since A is a symmetric Sidon set, this can only happen if $\chi_{1} \in\left\{\chi_{3}, \chi_{4}\right\}$ or $\chi_{1} \chi_{2}=\chi_{3} \chi_{4}=\alpha$. Thus, the some above becomes

$$
2 \sum_{\substack{\chi_{1}, \chi_{2} \in A \\ x_{2} \neq \alpha \\ \chi_{1} \neq \chi_{2}}}\left|\lambda_{\chi_{1}}\right|^{2}\left|\lambda_{\chi_{2}}\right|^{2}+\sum_{\chi \in A}\left|\lambda_{\chi}\right|^{4}+\sum_{\chi_{1}, \chi_{3} \in A} \lambda_{\chi_{1}} \lambda_{\alpha \chi_{1}^{-1}} \overline{\lambda_{\chi_{3}} \lambda_{\alpha \chi_{3}^{-1}}} .
$$

Observe that

$$
2 \sum_{\substack{\chi_{1}, \chi_{2} \in A \\ \chi_{1} \chi_{2} \neq \alpha \sum_{\chi \in A} \\ \chi_{1} \neq \chi_{2}}}\left|\lambda_{\chi}\right|^{4}\left|\lambda_{\chi_{1}}\right|^{2}\left|\lambda_{\chi_{2}}\right|^{2} \leqslant 2\left(\sum_{\chi \in A}\left|\lambda_{\chi}\right|^{2}\right)^{2},
$$

and

$$
\begin{aligned}
\left|\sum_{\chi_{1}, \chi_{3} \in A} \lambda_{\chi_{1}} \lambda_{\alpha \chi_{1}} \overline{\lambda_{\chi_{3}} \lambda_{\alpha \chi_{3}}}\right| & \leqslant\left(\sum_{\chi \in A}\left|\lambda_{\chi}\right| \cdot\left|\lambda_{\alpha \chi}\right|\right)^{2}=\left(\frac{1}{2} \sum_{\chi \in A} 2\left|\lambda_{\chi}\right| \cdot\left|\lambda_{\alpha \chi}\right|\right)^{2} \\
& \leqslant\left(\frac{1}{2} \sum_{\chi \in A}\left|\lambda_{\chi}\right|^{2}+\left|\lambda_{\alpha \chi}\right|^{2}\right)^{2}=\left(\sum_{\chi \in A}\left|\lambda_{\chi}\right|^{2}\right)^{2}
\end{aligned}
$$

concluding the result.
3. Let G be an abelian group, denoted additively. For a finite subset $A \subset G$, we denote by $E(A)$ the number of quadruples $(a, b, c, d) \in A^{4}$ such that $a+b=c+d$.
(a) Show that A is a Sidon set in G if and only if $E(A)=2|A|^{2}-|A|$.

The remainder of the exercise shows that a finite set A may satisfy $E(A)=2|A|^{2}+O(|A|)$, but not contain any Sidon subset of size $\sim|A|$. We take $G=\mathbf{Z}$.
(b) Show that for all large integers N, there exists a Sidon set $A \subset\{1, \ldots, N\} \cap 2 \mathbf{Z}$ with $|A| \rightarrow+\infty$ as $N \rightarrow+\infty$.
(c) Consider a Sidon set $A \subset\{1, \ldots, N\} \cap 2 \mathbf{Z}$. Define

$$
A^{\prime}=A \cup\left\{a+N 2^{a+1} \mid a \in A\right\} \cup\left\{a-N 2^{a+1} \mid a \in A\right\} \subset \mathbf{Z} .
$$

(d) Show that if $A^{\prime \prime} \subset A^{\prime}$ is a Sidon set, we have $\left|A^{\prime \prime}\right| \leqslant \frac{2}{3}\left|A^{\prime}\right|$.
(e) Let

$$
x_{1}+x_{2}=x_{3}+x_{4},
$$

with

$$
x_{i}=a_{i}+\varepsilon_{i} N 2^{a_{i}+1}, \quad a_{i} \in A, \quad \varepsilon_{i} \in\{-1,0,1\},
$$

Show that $a_{1}+a_{2}=a_{3}+a_{4}$.
(f) Suppose that $a_{1}=a_{3}$, hence $a_{2}=a_{4}$. Show that

$$
\left(\varepsilon_{1}-\varepsilon_{3}\right) 2^{a_{1}}=\left(\varepsilon_{4}-\varepsilon_{2}\right) 2^{a_{2}} .
$$

(g) Deduce that $x_{1}=x_{3}$ if $\varepsilon_{1}=\varepsilon_{3}$ or $\varepsilon_{2}=\varepsilon_{4}$.
(h) Suppose further that $\varepsilon_{1} \neq \varepsilon_{3}$ and $\varepsilon_{2} \neq \varepsilon_{4}$. Show that $a_{1}=a_{2}=a_{3}=a_{4}$ and $\varepsilon_{1}+\varepsilon_{2}=\varepsilon_{3}+\varepsilon_{4}$.
(i) Conclude that if $x_{1} \notin\left\{x_{3}, x_{4}\right\}$, then $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ has one of the forms

$$
\begin{array}{ll}
\left(a+N 2^{a+1}, a-N 2^{a+1}, a, a\right), & \left(a-N 2^{a+1}, a+N 2^{a+1}, a, a\right), \\
\left(a, a, a-N 2^{a+1}, a+N 2^{a+1}\right), & \left(a, a, a+N 2^{a+1}, a-N 2^{a+1}\right),
\end{array}
$$

for some $a \in A$. (Hint: consider the various possibilities for $\left(\varepsilon_{1}, \ldots, \varepsilon_{4}\right)$ for given $\left(\varepsilon_{3}, \varepsilon_{4}\right)$.
(j) Deduce that

$$
E\left(A^{\prime \prime}\right)=2\left|A^{\prime \prime}\right|^{2}+O\left(\left|A^{\prime \prime}\right|\right)
$$

Solution.

(a) For any $(a, b, c, d) \in A^{4}$, let's count the number of trivial solutions for $a+b=$ $c+d$:

- if $a \neq b$, there are $|A|(|A|-1) \cdot 2$ solutions
- if $a=b$ there are $|A|$ solutions.

Thus, if A is a Sidon set, $E(A)=|A|(|A|-1) \cdot 2+|A|=2|A|^{2}-|A|$. On the other hand, if $E(A)=|A|(|A|-1) \cdot 2+|A|=2|A|^{2}-|A|$., there are only trivial solutions for the equation $a+b=c+d$, so A is a Sidon set.
(b) Let $A=\left\{2^{n}, n \leqslant\left\lfloor\log _{2} N\right\rfloor\right\}$. The proof that A is a Sidon set follows from the uniqueness of representation of a number in basis 2 .
(c) -
(d) For $a \in A$, we prove that it is only possible that two elements of the set $\left\{a, a+N \cdot 2^{a+1}, a+N \cdot 2^{a+1}\right\}$ can belong to $A^{\prime \prime}$. Indeed, if $\left\{a, a+N \cdot 2^{a+1}, a-\right.$ $\left.N \cdot 2^{a+1}\right\} \subset A^{\prime \prime}$ then we can write

$$
a+a=a+N \cdot 2^{a+1}+a-N \cdot 2^{a+1}
$$

which is a contradiction, because $A^{\prime \prime}$ is a Sidon set. Thus $\left|A^{\prime \prime}\right| \leqslant \frac{2}{3}\left|A^{\prime}\right|$.
(e) Let $x_{1}, x_{2}, x_{3}, x_{4} \in A^{\prime \prime}$, where $x_{i}=a_{i}+\varepsilon_{i} \cdot N 2^{a_{i}+1}$, satisfying $a_{i} \in A$ and $\varepsilon_{i} \in\{-1,0,1\}$, for $i=1,2,3,4$, and suppose that

$$
x_{1}+x_{2}=x_{3}+x_{4} .
$$

Then, it holds that

$$
a_{1}+\varepsilon_{1} N \cdot 2^{a_{1}+1}+a_{2}+\varepsilon_{2} N \cdot 2^{a_{2}+1}=a_{3}+\varepsilon_{3} N \cdot 2^{a_{3}+1}+a_{4}+\varepsilon_{4} N \cdot 2^{a_{4}+1} .
$$

Reducing the equation modulo $2 N$ we get

$$
a_{1}+a_{2} \bmod 2 N=a_{3}+a_{4} \bmod 2 N,
$$

and since $a_{i} \leqslant N$ we can conclude that

$$
a_{1}+a_{2}=a_{3}+a_{4} .
$$

(f) If $a_{1}=a_{3}$ and $a_{2}=a_{4}$ we have

$$
\begin{aligned}
a_{1}+\varepsilon_{1} N \cdot 2^{a_{1}+1}+a_{2}+\varepsilon_{2} N \cdot 2^{a_{2}+1} & =a_{1}+\varepsilon_{3} N \cdot 2^{a_{1}+1}+a_{2}+\varepsilon_{4} N \cdot 2^{a_{2}+1} \\
\left(\varepsilon_{1}-\varepsilon_{3}\right) 2^{a_{1}} & =\left(\varepsilon_{4}-\varepsilon_{2}\right) 2^{a_{2}} .
\end{aligned}
$$

(g) If $\varepsilon_{1}=\varepsilon_{3}$ then it is clear that $x_{1}=x_{3}$. If $\varepsilon_{2}=\varepsilon_{4}$ then it follows that $x_{2}=x_{4}$ and thus $x_{1}=x_{3}$.
(h) We can suppose, without loss of generality, that $\varepsilon_{1}-\varepsilon_{3}>0$. Thus, $\frac{\varepsilon_{4}-\varepsilon_{2}}{\varepsilon_{1}-\varepsilon_{3}} \in$ $\left\{\frac{1}{2}, 1,2\right\}$. So, one of the three possibilities above holds

$$
\begin{aligned}
& 2^{a_{1}}=2^{a_{2}-1} \\
& 2^{a_{1}}=2^{a_{2}+1} \\
& 2^{a_{1}}=2^{a_{2}} .
\end{aligned}
$$

But since $A \subset 2 \mathbf{Z}$, only the last option is true, so $a_{1}=a_{2}=a_{3}=a_{4}$ and $\left(\varepsilon_{1}-\varepsilon_{3}\right) 2^{a_{1}}=\left(\varepsilon_{4}-\varepsilon_{2}\right) 2^{a_{1}}$ implies that $\varepsilon_{1}+\varepsilon_{2}=\varepsilon_{3}+\varepsilon_{4}$.
(i) If $x_{1} \notin\left\{x_{3}, x_{4}\right\}$ then, from the previous items, it holds that $a_{1}=a_{2}=a_{3}=a_{4}$. We analyse the solutions considering the possibilities for $\left(\varepsilon_{1}, \varepsilon_{3}\right)$:

$$
\left(\varepsilon_{1}, \varepsilon_{3}\right)=\left\{\begin{array}{l}
(0,1) \\
(1,0) \\
(-1,1) \\
(1,-1) \\
(-1,0) \\
(0,-1 .)
\end{array}\right.
$$

- if $\left(\varepsilon_{1}, \varepsilon_{3}\right)=(0,1)$, using the equation $\varepsilon_{1}+\varepsilon_{2}=\varepsilon_{3}+\varepsilon_{4}$ we conclude that the possibilities for $\left(\varepsilon_{2}, \varepsilon_{4}\right)$ are $(1,0)$ or $(0,-1)$. The first one would imply that $x_{2}=x_{4}$ which cannot hold, so only the second can hold, corresponding to the element ($a, a, a+N 2^{a+1}, a-N 2^{a+1}$).
- if $\left(\varepsilon_{1}, \varepsilon_{3}\right)=(1,0)$ an analogous analysis implies that the unique possibility corresponds to the element $\left(a+N 2^{a+1}, a-N 2^{a+1}, a, a\right)$.
- if $\left(\varepsilon_{1}, \varepsilon_{3}\right)=(-1,1)$ then we would have $\left(\varepsilon_{2}, \varepsilon_{4}\right)=(1,-1)$, which contradicts $x_{1} \neq x_{4}$. The case $\left(\varepsilon_{1}, \varepsilon_{3}\right)=(1,-1)$ is analogous.
- if $\left(\varepsilon_{1}, \varepsilon_{3}\right)=(-1,0)$, then the only possibility that works for $\left(\varepsilon_{2}, \varepsilon_{4}\right)$ is $(1,0)$, correspoding to the element $\left(a-N 2^{a+1}, a+N 2^{a+1}, a, a\right)$.
- if $\left(\varepsilon_{1}, \varepsilon_{3}\right)=(0,-1)$, then the only possibility that works for $\left(\varepsilon_{2}, \varepsilon_{4}\right)$ is $(0,1)$, correspoding to the element ($a, a, a-N 2^{a+1}, a+N 2^{a+1}$)
- From the previous items, we conclude that $2\left|A^{\prime \prime}\right|^{2}-\left|A^{\prime \prime}\right| \leqslant E\left(A^{\prime \prime}\right)=$ $2\left|A^{\prime \prime}\right|^{2}-\left|A^{\prime \prime}\right|+4\left|A^{\prime \prime}\right|$.

