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Prof. Emmanuel Kowalski

Exercise sheet 2

1. Show that if A1 ⊂ G1 and A2 ⊂ G2 are Sidon sets with |Ai| ⩾ 2, then A1 × A2 is
not a Sidon set in G1 ×G2.

Solution. Since |Ai| ⩾ 2, i = 1, 2, we can take a1 ̸= b1 ∈ A1 and a2 ̸= b2 ∈ A2.
Observe that

(a1, a2) + (b1, b2) = (a1, b2) + (b1, a2)

but (a1, a2) ̸= (a1, b2), (b1, a2). Thus A1 × A2 is not a Sidon set.

2. Let G be a finite abelian group. Let α ∈ G be a fixed element. A subset A ⊂ G is
called a symmetric Sidon set with center α if A = α−A (i.e., for any x in A, the
element α− x is also in A) and if the equation

a+ b = c+ d

with (a, b, c, d) ∈ A4 implies that a ∈ {c, d} or a+ b = α.

(a) Let E be a field with characteristic different from 3. Prove that the set

A = {(x, x3) | x ∈ E} ⊂ E × E

is a symmetric Sidon set with center 0.

(b) Prove that if A ⊂ G is a symmetric Sidon set, then it contains a subset
A′ ⊂ A with |A′| ⩾ (|A| − 1)/2 such that A′ is a Sidon set.

(c) Let G be a finite abelian group and A ⊂ Ĝ a finite set of characters of G.
If A is a symmetric Sidon set with center α, prove that∑

x∈G

∣∣∣∑
χ∈A

λχχ(x)
∣∣∣4 ⩽ 3

(∑
χ∈A

|λχ|2
)2
.

Solution.

(a) First we observe that if (x, x3) ∈ A then (−x,−x3) = (−x, (−x)3) ∈ A. To
conclude that A is a summetric Sidon set, we let a, b, c, d ∈ E be such that

a+ b = c+ d

a3 + b3 = c3 + d3.
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Taking the cube of the first equation and subtracting the second one, we get

3ab(a+ b) = 3cd(c+ d)

and since E has characteristic different than 3, it holds that

ab(a+ b) = cd(c+ d).

If a+ b = 0, there is nothing to prove. If a+ b ̸= 0, then it holds that

a+ b = c+ d

ab = cd,

and, as we saw in class, this implies that a ∈ {c, d}.
(b) Recall that if A is a symmetric Sidon set with center α, it holds that x ∈

A ⇔ α − x ∈ A. First we observe that there is at most one element x ∈ A
such that x = α − x ⇒ 2x = α. If it exists, we remove it and consider the
ordering A\{x} = {x1, α− x1, . . . , xn, α− xn}. Let A′ = {x1, . . . xn}.
First let’s prove that A′ is a Sidon set. Let a, b, c, d ∈ A′ satisfying

a+ b = c+ d.

First, observe that a + b ̸= α, otherwise we would have a = α − b which is
not possible by construction. Thus, since A′ ⊂ A and A is a symmetric Sidon
set, it holds that a ∈ {c, d} and we conclude that A′ is a Sidon set.

Since we removed a potential x = α− x, and for all xi, α− xi ∈ A we added
exactly one of them, it holds that

|A′| ⩾ (|A| − 1)/2.

(c) Opening the sum on the (LSH) we get

1

|G|
∑
x∈G

∑
χ1,χ2,χ3,χ4∈A

λχ1λχ2λχ3λχ4χ1(x)χ2(x)χ3(x)χ4(x) =

1

|G|
∑

χ1,χ2,χ3,χ4∈A

λχ1λχ2λχ3λχ4

∑
x∈G

χ1(x)χ2(x)χ3(x)χ4(x)

and observe that from the orthogonality relations in Ĝ imply the sum inner
sum is non-zero if an only if χ1χ2 = χ3χ4 and, since A is a symmetric Sidon
set, this can only happen if χ1 ∈ {χ3, χ4} or χ1χ2 = χ3χ4 = α. Thus, the
some above becomes

2
∑

χ1,χ2∈A
χ1χ2 ̸=α
χ1 ̸=χ2

|λχ1|2|λχ2 |2 +
∑
χ∈A

|λχ|4 +
∑

χ1,χ3∈A

λχ1λαχ−1
1
λχ3λαχ−1

3
.
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Observe that

2
∑

χ1,χ2∈A
χ1χ2 ̸=α+

∑
χ∈A |λχ|4

χ1 ̸=χ2

|λχ1|2|λχ2|2 ⩽ 2

(∑
χ∈A

|λχ|2
)2

,

and∣∣∣∣∣ ∑
χ1,χ3∈A

λχ1λαχ1λχ3λαχ3

∣∣∣∣∣ ⩽
(∑

χ∈A

|λχ| · |λαχ|

)2

=

(
1

2

∑
χ∈A

2|λχ| · |λαχ|

)2

⩽

(
1

2

∑
χ∈A

|λχ|2 + |λαχ|2
)2

=

(∑
χ∈A

|λχ|2
)2

,

concluding the result.

3. Let G be an abelian group, denoted additively. For a finite subset A ⊂ G, we
denote by E(A) the number of quadruples (a, b, c, d) ∈ A4 such that a+ b = c+ d.

(a) Show that A is a Sidon set in G if and only if E(A) = 2|A|2 − |A|.
The remainder of the exercise shows that a finite set A may satisfy
E(A) = 2|A|2+O(|A|), but not contain any Sidon subset of size ∼ |A|.
We take G = Z.

(b) Show that for all large integersN , there exists a Sidon set A ⊂ {1, . . . , N}∩2Z
with |A| → +∞ as N → +∞.

(c) Consider a Sidon set A ⊂ {1, . . . , N} ∩ 2Z. Define

A′ = A ∪ {a+N2a+1 | a ∈ A} ∪ {a−N2a+1 | a ∈ A} ⊂ Z.

(d) Show that if A′′ ⊂ A′ is a Sidon set, we have |A′′| ⩽ 2
3
|A′|.

(e) Let
x1 + x2 = x3 + x4,

with
xi = ai + εiN2ai+1, ai ∈ A, εi ∈ {−1, 0, 1},

Show that a1 + a2 = a3 + a4.

(f) Suppose that a1 = a3, hence a2 = a4. Show that

(ε1 − ε3)2
a1 = (ε4 − ε2)2

a2 .

(g) Deduce that x1 = x3 if ε1 = ε3 or ε2 = ε4.
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(h) Suppose further that ε1 ̸= ε3 and ε2 ̸= ε4. Show that a1 = a2 = a3 = a4 and
ε1 + ε2 = ε3 + ε4.

(i) Conclude that if x1 /∈ {x3, x4}, then (x1, x2, x3, x4) has one of the forms

(a+N2a+1, a−N2a+1, a, a), (a−N2a+1, a+N2a+1, a, a),

(a, a, a−N2a+1, a+N2a+1), (a, a, a+N2a+1, a−N2a+1),

for some a ∈ A. (Hint: consider the various possibilities for (ε1, . . . , ε4) for
given (ε3, ε4).

(j) Deduce that
E(A′′) = 2|A′′|2 +O(|A′′|).

Solution.

(a) For any (a, b, c, d) ∈ A4, let’s count the number of trivial solutions for a+ b =
c+ d:

• if a ̸= b, there are |A|(|A| − 1) · 2 solutions

• if a = b there are |A| solutions.
Thus, if A is a Sidon set, E(A) = |A|(|A| − 1) · 2 + |A| = 2|A|2 − |A|. On
the other hand, if E(A) = |A|(|A| − 1) · 2+ |A| = 2|A|2 − |A|., there are only
trivial solutions for the equation a+ b = c+ d, so A is a Sidon set.

(b) Let A = {2n, n ⩽ ⌊log2N⌋}. The proof that A is a Sidon set follows from the
uniqueness of representation of a number in basis 2.

(c) -

(d) For a ∈ A, we prove that it is only possible that two elements of the set
{a, a+N · 2a+1, a+N · 2a+1} can belong to A′′. Indeed, if {a, a+N · 2a+1, a−
N · 2a+1} ⊂ A′′ then we can write

a+ a = a+N · 2a+1 + a−N · 2a+1,

which is a contradiction, because A′′ is a Sidon set. Thus |A′′| ⩽ 2
3
|A′|.

(e) Let x1, x2, x3, x4 ∈ A′′, where xi = ai + εi · N2ai+1, satisfying ai ∈ A and
εi ∈ {−1, 0, 1}, for i = 1, 2, 3, 4, and suppose that

x1 + x2 = x3 + x4.

Then, it holds that

a1 + ε1N · 2a1+1 + a2 + ε2N · 2a2+1 = a3 + ε3N · 2a3+1 + a4 + ε4N · 2a4+1.

Reducing the equation modulo 2N we get

a1 + a2mod 2N = a3 + a4mod 2N,

and since ai ⩽ N we can conclude that

a1 + a2 = a3 + a4.
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(f) If a1 = a3 and a2 = a4 we have

a1 + ε1N · 2a1+1 + a2 + ε2N · 2a2+1 = a1 + ε3N · 2a1+1 + a2 + ε4N · 2a2+1

(ε1 − ε3)2
a1 = (ε4 − ε2)2

a2 .

(g) If ε1 = ε3 then it is clear that x1 = x3. If ε2 = ε4 then it follows that x2 = x4

and thus x1 = x3.

(h) We can suppose, without loss of generality, that ε1 − ε3 > 0. Thus, ε4−ε2
ε1−ε3

∈
{1
2
, 1, 2}. So, one of the three possibilities above holds

2a1 = 2a2−1

2a1 = 2a2+1

2a1 = 2a2 .

But since A ⊂ 2Z, only the last option is true, so a1 = a2 = a3 = a4 and
(ε1 − ε3)2

a1 = (ε4 − ε2)2
a1 implies that ε1 + ε2 = ε3 + ε4.

(i) If x1 /∈ {x3, x4} then, from the previous items, it holds that a1 = a2 = a3 = a4.
We analyse the solutions considering the possibilities for (ε1, ε3):

(ε1, ε3) =



(0, 1)

(1, 0)

(−1, 1)

(1,−1)

(−1, 0)

(0,−1.)

• if (ε1, ε3) = (0, 1), using the equation ε1 + ε2 = ε3 + ε4 we conclude
that the possibilities for (ε2, ε4) are (1, 0) or (0,−1). The first one would
imply that x2 = x4 which cannot hold, so only the second can hold,
corresponding to the element (a, a, a+N2a+1, a−N2a+1).

• if (ε1, ε3) = (1, 0) an analogous analysis implies that the unique possibi-
lity corresponds to the element (a+N2a+1, a−N2a+1, a, a).

• if (ε1, ε3) = (−1, 1) then we would have (ε2, ε4) = (1,−1), which contra-
dicts x1 ̸= x4. The case (ε1, ε3) = (1,−1) is analogous.

• if (ε1, ε3) = (−1, 0), then the only possibility that works for (ε2, ε4) is
(1, 0), correspoding to the element (a−N2a+1, a+N2a+1, a, a) .

• if (ε1, ε3) = (0,−1), then the only possibility that works for (ε2, ε4) is
(0, 1), correspoding to the element (a, a, a−N2a+1, a+N2a+1)

• From the previous items, we conclude that 2|A′′|2 − |A′′| ⩽ E(A′′) =
2|A′′|2 − |A′′|+ 4|A′′|.
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