Exercise sheet 3

1. For any integer $N \geqslant 1$, find examples of sets A and B of positive integers such that $|A|=|B|=N$ and

$$
\frac{|2 A|}{A} \leqslant 2, \quad \frac{|2 B|}{|B|} \leqslant 2,
$$

but

$$
\frac{|2(A \cup B)|}{|A \cup B|} \geqslant \frac{N}{2} .
$$

2. For any integer $N \geqslant 1$, find examples of sets A and B of positive integers such that $|A|=|B|=N$ and

$$
\frac{|2 A|}{A} \leqslant 10, \quad \frac{|2 B|}{|B|} \leqslant 10
$$

but

$$
\frac{|2(A \cap B)|}{|A \cap B|} \geqslant \frac{N^{1 / 2}}{10}
$$

3. Let A_{1}, A_{2}, A_{3} be non-empty finite subsets of some group G. If $\alpha \geqslant 1$ is such that

$$
\left|A_{j} \cap A_{3}\right| \geqslant \frac{\left|A_{j}\right|}{\alpha}, \quad\left|A_{i} \cdot A_{j}\right| \leqslant \alpha\left|A_{j}\right|
$$

for all i and j, then show that

$$
\left|A_{1} \cdot A_{2}\right| \leqslant \alpha^{6}\left|A_{3}\right| .
$$

(Hint: use the Ruzsa triangle inequality suitably)
4. Let G be a finite abelian group and A, B non-empty subsets of G. Let

$$
r(x)=\sum_{\substack{(a, b) \in A \times B \\ a+b=x}} 1
$$

be the representation function for $A+B$.
(a) Show that $r(x)=|A \cap(x-B)|$.
(b) Show that

$$
E(A, B)=\sum_{x \in(A-A) \cap(B-B)}|A \cap(x+A)||B \cap(x+B)| .
$$

5. Let G be a finite group and A, B non-empty subsets of G. Let $x_{0} \in A \cdot B$.
(a) Prove that

$$
\left|\left\{(a, b) \in A \times B \mid a b=x_{0}\right\} \times(B \cdot A)\right| \leqslant\left|B \cdot A^{-1}\right|\left|B^{-1} \cdot A\right| .
$$

(Hint: construct an injective map from the left-hand set to the cartesian product $B \cdot A^{-1} \times B^{-1} \cdot A$.)
(b) Deduce that if $x \in A \cdot B$, then

$$
\left|A \cap x B^{-1}\right| \leqslant \frac{\left|B \cdot A^{-1}\right|\left|B^{-1} \cdot A\right|}{|A \cdot B|}
$$

(c) If G is abelian, deduce that

$$
\left|A \cap x B^{-1}\right| \leqslant \frac{\left|B \cdot A^{-1}\right|^{2}}{|A \cdot B|}
$$

6. Let G be a finite abelian group.
(a) If H_{1} and H_{2} are subgroups of G, then show that the Ruzsa distance $d\left(H_{1}, H_{2}\right)$ satisfies

$$
d\left(H_{1}, H_{2}\right)=\log \left(\frac{\sqrt{\left|H_{1}\right|\left|H_{2}\right|}}{\mid H_{1} \cap H_{2}}\right)
$$

(b) Show that

$$
d\left(H_{1}, H_{2}\right)=d\left(H_{1}, H_{1}+H_{2}\right)+d\left(H_{1}+H_{2}, H_{2}\right)=d\left(H_{1}, H_{1} \cap H_{2}\right)+d\left(H_{1} \cap H_{2}, H_{2}\right) .
$$

7. Let G be a finite abelian group and $A \subset G$ a non-empty subset such that

$$
|2 A-2 A|<2|A|
$$

(a) Show that there exists $x_{0} \in G$ such that

$$
A-2 A \subset A-A+x_{0} .
$$

(b) Deduce that $A-A$ is a subgroup of G.

