Prof. Emmanuel Kowalski

Exercise sheet 3

1. For any integer $N \geqslant 1$, find examples of sets A and B of positive integers such that |A| = |B| = N and

$$\frac{|2A|}{A} \leqslant 2, \qquad \frac{|2B|}{|B|} \leqslant 2,$$

but

$$\frac{|2(A \cup B)|}{|A \cup B|} \geqslant \frac{N}{2}.$$

2. For any integer $N \ge 1$, find examples of sets A and B of positive integers such that |A| = |B| = N and

$$\frac{|2A|}{A} \leqslant 10, \qquad \frac{|2B|}{|B|} \leqslant 10,$$

but

$$\frac{|2(A \cap B)|}{|A \cap B|} \geqslant \frac{N^{1/2}}{10}.$$

3. Let A_1, A_2, A_3 be non-empty finite subsets of some group G. If $\alpha \ge 1$ is such that

$$|A_j \cap A_3| \geqslant \frac{|A_j|}{\alpha}, \qquad |A_i \cdot A_j| \leqslant \alpha |A_j|$$

for all i and j, then show that

$$|A_1 \cdot A_2| \leqslant \alpha^6 |A_3|.$$

(Hint: use the Ruzsa triangle inequality suitably)

4. Let G be a finite abelian group and A, B non-empty subsets of G. Let

$$r(x) = \sum_{\substack{(a,b) \in A \times B \\ a+b=x}} 1$$

be the representation function for A + B.

(a) Show that $r(x) = |A \cap (x - B)|$.

(b) Show that

$$E(A,B) = \sum_{x \in (A-A) \cap (B-B)} |A \cap (x+A)| |B \cap (x+B)|.$$

- 5. Let G be a finite group and A, B non-empty subsets of G. Let $x_0 \in A \cdot B$.
 - (a) Prove that

$$|\{(a,b) \in A \times B \mid ab = x_0\} \times (B \cdot A)| \le |B \cdot A^{-1}| |B^{-1} \cdot A|.$$

(Hint: construct an injective map from the left-hand set to the cartesian product $B \cdot A^{-1} \times B^{-1} \cdot A$.)

(b) Deduce that if $x \in A \cdot B$, then

$$|A \cap xB^{-1}| \leqslant \frac{|B \cdot A^{-1}||B^{-1} \cdot A|}{|A \cdot B|},$$

(c) If G is abelian, deduce that

$$|A \cap xB^{-1}| \leqslant \frac{|B \cdot A^{-1}|^2}{|A \cdot B|}.$$

- 6. Let G be a finite abelian group.
 - (a) If H_1 and H_2 are subgroups of G, then show that the Ruzsa distance $d(H_1, H_2)$ satisfies

$$d(H_1, H_2) = \log\left(\frac{\sqrt{|H_1||H_2|}}{|H_1 \cap H_2|}\right).$$

(b) Show that

$$d(H_1, H_2) = d(H_1, H_1 + H_2) + d(H_1 + H_2, H_2) = d(H_1, H_1 \cap H_2) + d(H_1 \cap H_2, H_2).$$

7. Let G be a finite abelian group and $A \subset G$ a non-empty subset such that

$$|2A - 2A| < 2|A|.$$

(a) Show that there exists $x_0 \in G$ such that

$$A-2A \subset A-A+x_0$$

(b) Deduce that A - A is a subgroup of G.