Exercise sheet 3

1. For any integer $N \geqslant 1$, find examples of sets A and B of positive integers such that $|A|=|B|=N$ and

$$
\frac{|2 A|}{|A|} \leqslant 2, \quad \frac{|2 B|}{|B|} \leqslant 2
$$

but

$$
\frac{|2(A \cup B)|}{|A \cup B|} \geqslant \frac{N}{2}
$$

Solution. Let $A=\{1, \ldots, N\}$ and $B=\left\{N^{2}+N, N^{2}+2 N, \ldots, N^{2}+N \cdot N\right\}$. It is clear that

$$
\frac{|2 A|}{|A|} \leqslant 2, \quad \frac{|2 B|}{|B|} \leqslant 2
$$

We observe that, $A+B \subset 2(A \cup B)$ and

$$
A+B=\left\{N^{2}+a N+b: a, b \in[N]\right\}
$$

so $|A+B|=N^{2}$. On the other hand $|A \cup B|=2 N$ thus

$$
\frac{|2(A \cup B)|}{|A \cup B|} \geqslant \frac{N^{2}}{2 N}=\frac{N}{2} .
$$

2. For any integer $N \geqslant 1$, find examples of sets A and B of positive integers such that $|A|=|B|=N$ and

$$
\frac{|2 A|}{|A|} \leqslant 10, \quad \frac{|2 B|}{|B|} \leqslant 10
$$

but

$$
\frac{|2(A \cap B)|}{|A \cap B|} \geqslant \frac{N^{1 / 2}}{10}
$$

Solution.
From Theorem 2.3.13 (1), for any interval of \mathbb{Z} of length N we can find a Sidon set of size $\geqslant N^{1 / 2} / 2$. Let S be a Sidon set of size $\geqslant N^{1 / 2} / 4$ in $\{1, \cdots N / 2\}$. We let

$$
\begin{aligned}
& A=S \cup\{N / 2, \cdots, N\} \\
& B=S \cup\{N, \cdots, 3 N / 2\} .
\end{aligned}
$$

We observe that $|2 A| \leqslant\left|2 A^{\prime}\right|+|2 S|+\left|A^{\prime}+S\right| \leqslant 3 N$. On the other hand $|A| \geqslant$ $\frac{N^{1 / 2}}{4}+\frac{N}{2}$, thus it holds that

$$
\frac{|2 A|}{|A|} \leqslant 10 .
$$

A similar argument works to show that

$$
\frac{|2 B|}{|B|} \leqslant 10 .
$$

We observe that $A \cap B=S$, thus $|2(A \cap B)| \geqslant \frac{N}{16}$ and we can conclude the result. 3. Let A_{1}, A_{2}, A_{3} be non-empty finite subsets of some group G. If $\alpha \geqslant 1$ is such that

$$
\left|A_{j} \cap A_{3}\right| \geqslant \frac{\left|A_{j}\right|}{\alpha}, \quad\left|A_{j} \cdot A_{j}\right| \leqslant \alpha\left|A_{j}\right|
$$

for $1 \leqslant j \leqslant 3$, then show that

$$
\left|A_{1} \cdot A_{2}\right| \leqslant \alpha^{6}\left|A_{3}\right| .
$$

(Hint: use the Ruzsa triangle inequality suitably)

Solution.

We recall that Rusza inequality can be framed as

$$
\left|A \cdot C^{-1}\right| \leqslant \frac{\left|A \cdot B^{-1}\right| \cdot\left|B \cdot C^{-1}\right|}{|B|} .
$$

We apply this inequality twice:

$$
\begin{aligned}
\left|A_{1} \cdot A_{2}\right| & \leqslant \frac{\left|A_{1} \cdot\left(A_{1} \cap A_{3}\right)\right| \cdot\left|\left(A_{1} \cap A_{3}\right)^{-1} \cdot A_{2}\right|}{\left|A_{1} \cap A_{3}\right|} \\
& \leqslant \frac{\left|A_{1} \cdot\left(A_{1} \cap A_{3}\right)\right| \cdot\left|\left(A_{1} \cap A_{3}\right)^{-1} \cdot\left(A_{2} \cap A_{3}\right)^{-1}\right|\left|\left(A_{2} \cap A_{3}\right) \cdot A_{2}\right|}{\left|A_{1} \cap A_{3}\right|\left|A_{2} \cap A_{3}\right|} .
\end{aligned}
$$

Thus, using the hyphotesis we get

$$
\begin{aligned}
& \left|A_{1} \cdot A_{2}\right| \frac{\alpha\left|A_{1}\right| \alpha\left|A_{3}\right| \alpha\left|A_{2}\right|}{\frac{1}{\alpha}\left|A_{1}\right| \frac{1}{\alpha}\left|A_{2}\right|} \\
& \leqslant \alpha^{5}\left|A_{3}\right| .
\end{aligned}
$$

4. Let G be a finite abelian group and A, B non-empty subsets of G. Let

$$
r(x)=\sum_{\substack{(a, b) \in A \times B \\ a+b=x}} 1
$$

be the representation function for $A+B$.
(a) Show that $r(x)=|A \cap(x-B)|$.
(b) Show that

$$
E(A, B)=\sum_{x \in(A-A) \cap(B-B)}|A \cap(x+A)||B \cap(x+B)| .
$$

Solution.

(a) Observe that $(a, b) \in A \times B$ is such that $a+b=x$ if and only if $a=x-b \in$ $(x-B) \cap A$. Thus $r(x)=|A \cap(x-B)|$.
(b)

$$
\begin{aligned}
E(A, B) & =\sum_{x \in A \times B}|\{(a, b) \in A \times B: a+b=x\}| \\
& =\sum_{x \in A+B}\left|\left\{\left(a_{1}, a_{2}, b_{1}, b_{2}\right) \in A \times A \times B \times B: a_{1}+b_{1}=a_{2}+b_{2}=x\right\}\right| \\
& =\left|\left\{\left(a_{1}, a_{2}, b_{1}, b_{2}\right) \in A \times A \times B \times B: a_{1}+b_{1}=a_{2}+b_{2}\right\}\right| \\
& =\left|\left\{\left(a_{1}, a_{2}, b_{1}, b_{2}\right) \in A \times A \times B \times B: a_{1}-a_{2}=b_{2}-b_{1}\right\}\right| \\
& =\sum_{z \in(A-A) \cap(B-B)}\left|\left\{\left(a_{1}, a_{2}\right) \in A \times A: a_{1}-a_{2}=z\right\}\right|\left|\left\{\left(b_{1}, b_{2}\right) \in B \times B: b_{2}-b_{1}=z\right\}\right| \\
& =\sum_{z \in(A-A) \cap(B-B)}|A \cap(z+A)||B \cap(z+B)|
\end{aligned}
$$

where the last equality holds from a similar argument to the solution of the first item.
5. Let G be a finite group and A, B non-empty subsets of G. Let $x_{0} \in A \cdot B$.
(a) Prove that

$$
\left|\left\{(a, b) \in A \times B \mid a b=x_{0}\right\} \times(B \cdot A)\right| \leqslant\left|B \cdot A^{-1}\right|\left|B^{-1} \cdot A\right|
$$

(Hint: construct an injective map from the left-hand set to the cartesian product $B \cdot A^{-1} \times B^{-1} \cdot A$.)
(b) Deduce that if $x \in A \cdot B$, then

$$
\left|A \cap x B^{-1}\right| \leqslant \frac{\left|B \cdot A^{-1}\right|\left|B^{-1} \cdot A\right|}{|A \cdot B|}
$$

(c) If G is abelian, deduce that

$$
\left|A \cap x B^{-1}\right| \leqslant \frac{\left|B \cdot A^{-1}\right|^{2}}{|B \cdot A|}
$$

Solution.

(a) For $x \in B \cdot A$, chose $a(x) \in A$ and $b(x) \in B$ such that $b(x) a(x)=x$. Define the $\operatorname{map} f:\left\{(a, b) \in A \times B \mid a b=x_{0}\right\} \times B \cdot A \rightarrow B \cdot A^{-1} \times B^{-1} \times B^{-1} \cdot A, f(a, b, x)=$ $\left(b(x) a^{-1}, b^{-1} a(x)\right)$. Observe that if $f(a, b, x)=(u, v)$ then $u \cdot x_{0} \cdot v=x$, so we can recover $a(x)$ and $b(x)$ and consequently a and b and we conclude that f is injective.
(b) We observe that $(a, b) \in A \times B$ satisfies $a b=x$ if an only if $a=x b^{-1} \in$ $A \cap x B^{-1}$. Thus, from the previous item we deduce that

$$
\left|A \cap x B^{-1}\right|=|\{(a, b) \in A \times B \mid a b=x\}| \leqslant \frac{\left|B \cdot A^{-1}\right|\left|B^{-1} \cdot A\right|}{|(B \cdot A)|}
$$

(c) If G is abelian then $\left|B^{-1} \cdot A\right|=\left|\left(B^{-1} \cdot A\right)^{-1}\right|=\left|A^{-1} \cdot B\right|=\left|B \cdot A^{-1}\right|$ and $|A \cdot B|=|B \cdot A|$. The inequality follow from the previous item and these observations.
6. Let G be a finite abelian group.
(a) If H_{1} and H_{2} are subgroups of G, then show that the Ruzsa distance $d\left(H_{1}, H_{2}\right)$ satisfies

$$
d\left(H_{1}, H_{2}\right)=\log \left(\frac{\sqrt{\left|H_{1}\right|\left|H_{2}\right|}}{\left|H_{1} \cap H_{2}\right|}\right)
$$

(b) Show that
$d\left(H_{1}, H_{2}\right)=d\left(H_{1}, H_{1}+H_{2}\right)+d\left(H_{1}+H_{2}, H_{2}\right)=d\left(H_{1}, H_{1} \cap H_{2}\right)+d\left(H_{1} \cap H_{2}, H_{2}\right)$.

Solution.

(a) We observe that it suffices to prove that

$$
\left|H_{1}+H_{2}^{-1}\right| \cdot\left|H_{1} \cap H_{2}\right|=\left|H_{1}\right| \cdot\left|H_{2}\right| .
$$

For every $x \in H_{1} \cdot-H_{2}$ we choose $h_{1}(x) \in H_{1}$ and $h_{2}(x) \in H_{2}$ such that $h_{1}(x)-h_{2}(x)=x$.
We define the function $f: H_{1}-H_{2} \times H_{1} \cap H_{2} \rightarrow H_{1} \times H_{2}, f(x, h)=$ $\left(h_{1}(x)+h,-h+h_{2}(x)\right)$ and prove that it is a bijection. First, observe that the function is well defined because H_{1} and H_{2} are subgroups of G.
Now, bserve that it is injective. Indeed, for $(u, v) \in f\left(H_{1}-H_{2} \times H_{1} \cap H_{2}\right)$ we have that $u \cdot v=x$, so we can recover $h_{1}(x)$ and $h_{2}(x)$. Thus, $h=-h_{1}(x)+u$. To prove that it is surjective, let $\left(h_{1}, h_{2}\right) \in H_{1}+H_{2}$ be arbitrary. Let $x=h_{1}-$ h_{2}. Since $h_{1}+h_{2}=h_{1}(x)+h_{2}(x)$, we let $h=h_{1}-h_{1}(x)=h_{2}(x)-h_{2} \in H_{1} \cap H_{2}$ and observe that

$$
f(x, h)=\left(h_{1}(x)+h_{1}-h_{1}(x),-h_{2}(x)+h_{2}+h_{2}(x)\right)=\left(h_{1}, h_{2}\right) .
$$

(b) To prove the first equality observe that

$$
\exp \left(d\left(H_{1}, H_{1}+H_{2}\right)+d\left(H_{2}, H_{1}+H_{2}\right)\right)=\frac{\left|H_{1}+H_{1}+H_{2}\right|\left|H_{2}+H_{1}+H_{2}\right|}{\sqrt{\left|H_{1}\right|\left|H_{1}+H_{2}\right|^{2}\left|H_{2}\right|}},
$$

and since H_{1} and H_{2} are subgroups of G it holds that

$$
\exp \left(d\left(H_{1}, H_{1}+H_{2}\right)+d\left(H_{2}, H_{1}+H_{2}\right)\right)=\frac{\left|H_{1}+H_{2}\right|}{\sqrt{\left|H_{1}\right|\left|H_{2}\right|}}=\exp \left(H_{1}, H_{2}\right)
$$

To prove the second equality we use item a). Observe that $H_{1} \cap H_{2}$ is a subgroup of G so we can write

$$
\begin{aligned}
\exp \left(d\left(H_{1}, H_{1} \cap H_{2}\right)+d\left(H_{2}, H_{1} \cap H_{2}\right)\right) & =\frac{\sqrt{\left|H_{1}\right|\left|H_{1} \cap H_{2}\right|^{2}\left|H_{2}\right|}}{\left|H_{1} \cap H_{2}\right|^{2}} \\
& ==\frac{\sqrt{\left|H_{1}\right|\left|H_{2}\right|}}{\left|H_{1} \cap H_{2}\right|}=\exp \left(d\left(H_{1}, H_{2}\right)\right)
\end{aligned}
$$

7. Let G be a finite abelian group and $A \subset G$ a non-empty subset such that

$$
|2 A-2 A|<2|A|
$$

(a) Show that there exists $x_{0} \in G$ such that

$$
A-2 A \subset A-A+x_{0}
$$

(b) Deduce that $A-A$ is a subgroup of G.

Solution.

(a) Observe that we have $|A+(A-2 A)|<2|A|$. From Ruzsa's covering lemma we can find $X \subset G$ such that

$$
A-2 A \subset A-A+X
$$

and $|X| \leqslant \frac{|A+(A-2 A)|}{|A|}<2$, so $X=\left\{x_{0}\right\}$.
(b) First we observe that $0 \in A-A$ and if $x=a_{1}-a_{2} \in A-A$ then $-x=$ $a_{2}-a_{1} \in A-A$. Thus, to prove that $A-A$ is a subgroup of G, it suffices to prove that $2(A-A) \subset A-A$.
From the previous item we can conclude that

$$
2 A-A \subset A-A-x_{0}
$$

thus,

$$
2 A-2 A=A+(A-2 A) \subset A+\left(A-A+x_{0}\right) \subset A-A+x_{0}-x_{0}=A=A
$$

