Exercise sheet 4

1. Let G be a group and H a subgroup of G. Let $x \in G$, and define $I=H \cap x^{-1} H x$; this is a subgroup of H.
(a) For h_{1} and $h_{2} \in H$, show that

$$
H x h_{1} \cap H x h_{2}=\varnothing
$$

unless $h_{1} h_{2}^{-1} \in I$.
(b) If $h_{1} h_{2}^{-1} \in I$, then show that

$$
H x h_{1}=H x h_{2} .
$$

(c) Deduce that the product set $H x H$ (known as a double coset of H) is the disjoint union of $H x y$ for y running over a set of representatives of the cosets $h I$ of I in H. In particular, if H is finite, deduce that

$$
|H x H|=[H: I]|H| .
$$

2. Let p be a prime number and let

$$
U=\left\{\left.\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) \right\rvert\, t \in \mathbf{F}_{p}\right\}, \quad B=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \right\rvert\, a, b, d \in \mathbf{F}_{p}, a d=1\right\} .
$$

Set $U^{*}=U \backslash\{1\}$.
(a) Show that U and B are subgroups of $\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)$ with $|U|=p$ and $|B|=p(p-1)$.
(b) Let $x \in \mathrm{SL}_{2}\left(\mathbf{F}_{p}\right) \backslash B$. Show that the map

$$
\left\{\begin{array}{ccc}
U^{*} \times U^{*} \times U^{*} & \rightarrow & \mathrm{SL}_{2}\left(\mathbf{F}_{p}\right) \\
(u, v, w) & \mapsto & u x v x^{-1} w
\end{array}\right.
$$

is injective.
(c) Let A be a symmetric subset of $\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)$. Show that either $A \subset B$ or

$$
\left|U^{*} \cap A\right|^{3} \leqslant\left|A^{(5)}\right| .
$$

(This is a very special case of what are called Larsen-Pink non-concentration inequalities.)
(d) Let $x \in \mathrm{SL}_{2}\left(\mathbf{F}_{p}\right) \backslash B$. Let $A=U \cup\left\{x, x^{-1}\right\}$. Show that there exists $c>0$ and $\delta>0$, independent of p and x, such that

$$
\left|A^{(3)}\right| \geqslant c|A|^{1+\delta} .
$$

How large can you get δ to be?
3. Let p be an odd prime number. With the same notation as in the previous exercise, consider

$$
x=\left(\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)
$$

Let K be a subgroup of B such that $x^{2} \in K$. Let $A=K \cup\left\{x, x^{-1}\right\}$.
(a) Show that

$$
A^{(3)}=K \cup K x K \cup x^{-1} K x .
$$

(b) Deduce that

$$
\left|A^{(3)}\right| \leqslant(2+c)|K|,
$$

where c is the index of $K \cap x^{-1} K x$ in K. (Hint: use the first exercise.)
(c) Assume that -1 is a square modulo p (which means that p is congruent to 1 modulo 4). Let K be the subgroup of B of the form

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)
$$

where a is a square modulo p. Show that $x^{2} \in K$ and that

$$
\left[K: K \cap x^{-1} K x\right]=p .
$$

(d) Under the same assumption, show that $A^{(3)} \neq \mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)$, and

$$
\left|A^{(3)}\right| \leqslant c^{\prime}|A|^{3 / 2}
$$

for some constant $c^{\prime} \geqslant 0$. (You may use without proof the fact that

$$
\left|\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)\right|=p\left(p^{2}-1\right)
$$

for all p odd.)
Note: one can show that A is a generating set of $\operatorname{SL}_{2}\left(\mathbf{F}_{p}\right)$, so this example shows that the best exponent in Helfgott's Theorem (Theorem 2.6.7 in the notes) cannot be larger than $1 / 2$.

