Exercise sheet 4

1. Let G be a group and H a subgroup of G. Let $x \in G$, and define $I=H \cap x^{-1} H x$; this is a subgroup of H.
(a) For h_{1} and $h_{2} \in H$, show that

$$
H x h_{1} \cap H x h_{2}=\varnothing
$$

unless $h_{1} h_{2}^{-1} \in I$.
(b) If $h_{1} h_{2}^{-1} \in I$, then show that

$$
H x h_{1}=H x h_{2}
$$

(c) Deduce that the product set $H x H$ (known as a double coset of H) is the disjoint union of $H x y$ for y running over a set of representatives of the cosets $h I$ of I in H. In particular, if H is finite, deduce that

$$
|H x H|=[H: I]|H| .
$$

Solution.

(a) Suppose there exists h, \tilde{h} such that

$$
h x h_{1}=\tilde{h} x h_{2} \Leftrightarrow h_{1} h_{2}^{-1}=x^{-1} h^{-1} \tilde{h} x,
$$

therefore $h_{1} h_{2}^{-1} \in I$.
On the hand, if $h_{1} h_{2}^{-1}=x^{-1} h x \Rightarrow e x h_{1}=h x h_{2}$.
(b) Let $h x h_{1} \in H x h_{1}$ and write $h_{1} h_{2}^{-1}=x^{-1} \tilde{h} x$. Then

$$
h x h_{1}=h x x^{-1} \tilde{h} x h_{2}=h \tilde{h} x h_{2} .
$$

The other direction follows similarly.
(c) From the previous item we have

$$
H x H=\bigcup_{\substack{h_{i} \in H \\ h_{i} h_{j}^{-1} \notin I}} H x h_{i},
$$

a diskoint union. Therefore, $|H x H|=|H||H: I|$.
2. Let p be a prime number and let

$$
U=\left\{\left.\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) \right\rvert\, t \in \mathbf{F}_{p}\right\}, \quad B=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \right\rvert\, a, b, d \in \mathbf{F}_{p}, a d=1\right\} .
$$

Set $U^{*}=U \backslash\{1\}$.
(a) Show that U and B are subgroups of $\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)$ with $|U|=p$ and $|B|=p(p-1)$.
(b) Let $x \in \mathrm{SL}_{2}\left(\mathbf{F}_{p}\right) \backslash B$. Show that the map

$$
\left\{\begin{array}{ccc}
U^{*} \times U^{*} \times U^{*} & \rightarrow & \mathrm{SL}_{2}\left(\mathbf{F}_{p}\right) \\
(u, v, w) & \mapsto & \operatorname{uxvx}^{-1} w
\end{array}\right.
$$

is injective.
(c) Let A be a symmetric subset of $\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)$. Show that either $A \subset B$ or

$$
\left|U^{*} \cap A\right|^{3} \leqslant\left|A^{(5)}\right| .
$$

(This is a very special case of what are called Larsen-Pink non-concentration inequalities.)
(d) Let $x \in \mathrm{SL}_{2}\left(\mathbf{F}_{p}\right) \backslash B$. Let $A=U \cup\left\{x, x^{-1}\right\}$. Show that there exists $c>0$ and $\delta>0$, independent of p and x, such that

$$
\left|A^{(3)}\right| \geqslant c|A|^{1+\delta} .
$$

How large can you get δ to be?

Solution.

(a) Let $T_{t}=\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$ and observe that

$$
\begin{aligned}
T_{0} & =I \\
T_{t_{1}} \cdot T_{t+2} & =T_{t_{1}+t_{2}} \\
\left(T_{t}\right)^{-1} & =T_{-t},
\end{aligned}
$$

so U is a subgroup and $|U|=\left|\mathbf{F}_{p}\right|=p$
To show that B is a subgroup, observe that taking $b=0, a=1, d=1$ we have the identity, and

$$
\begin{aligned}
\left(\begin{array}{cc}
a_{1} & b_{1} \\
0 & d_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{2} & b_{2} \\
0 & d_{2}
\end{array}\right) & =\left(\begin{array}{cc}
a_{1} a_{2} & a_{1} b_{2}+b_{1} d_{2} \\
0 & d_{1} d_{2}
\end{array}\right) \in B \\
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)^{-1} & =\left(\begin{array}{cc}
d & -b \\
0 & a
\end{array}\right) \in B
\end{aligned}
$$

so B is a subgroup. Since $a \neq 0$ it holds that $|B|=p(p-1)$.
(b) Since $x \in \mathrm{SL}_{2}\left(\mathbf{F}_{p}\right) \backslash B$ it holds that

$$
x=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),
$$

where $c \neq 0$. We observe that

$$
\begin{aligned}
u x v x^{-1} w & =\tilde{u} x \tilde{v} x^{-1} \tilde{w} \Leftrightarrow \\
\left(\tilde{u}^{-1} u\right) x v x^{-1}\left(w \tilde{w}^{-1}\right) & =x \tilde{v} x^{-1} .
\end{aligned}
$$

Using that

$$
x\left(\begin{array}{ll}
1 & v \\
0 & 1
\end{array}\right) x^{-1}=\left(\begin{array}{cc}
a d-c a v-c & -a b+a^{2} v+a \\
-c v^{2} & -b c+a c v+a
\end{array}\right)
$$

and

$$
\begin{aligned}
& \left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
a_{1} & a_{1} t+b_{1} \\
c_{1} & c_{1} t+d_{1}
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)=\left(\begin{array}{cc}
a_{1}+t c_{1} & b_{1}+t d_{1} \\
c_{1} & d_{1},
\end{array}\right)
\end{aligned}
$$

and the fact that $c \neq 0$, we conclude that the map must be injective by comparing all the entries after multiplying the matrices.
(c) If A is not contained in B, let $x \in A \backslash B$. Since A is symmetric, $x^{-1} \in A$ and we conclude that $A^{(5)}$ is in the image of the map

$$
\left\{\begin{aligned}
& U^{*} \cap A \backslash\left\{x, x^{-1}\right\} \times U^{*} \cap A \backslash\left\{x, x^{-1}\right\} \times U^{*} \cap A \backslash\left\{x, x^{-1}\right\} \rightarrow \\
&(u, v, w) \\
& \mapsto \operatorname{SL}_{2}\left(\mathbf{F}_{p}\right) \\
& u x v x^{-1} w .
\end{aligned}\right.
$$

Since the map is injective, it holds that

$$
\left|U^{*} \cap A\right|^{3} \leqslant\left|A^{(5)}\right| .
$$

(d) We define the map

$$
\begin{aligned}
A \backslash\{0\} \times A \backslash\{0\} & \rightarrow A^{(3)} x^{-1} \\
(u, v) & \mapsto u x v x^{-1} .
\end{aligned}
$$

Following the strategy from the second item, we conclude that the map is injective, thus $\left|A^{(3)}\right| \geqslant c|A|^{2}$.
3. Let p be an odd prime number. With the same notation as in the previous exercise, consider

$$
x=\left(\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)
$$

Let K be a subgroup of B such that $x^{2} \in K$. Let $A=K \cup\left\{x, x^{-1}\right\}$.
(a) Show that

$$
A^{(3)}=K \cup K x K \cup x^{-1} K x .
$$

(b) Deduce that

$$
\left|A^{(3)}\right| \leqslant(2+c)|K|,
$$

where c is the index of $K \cap x^{-1} K x$ in K. (Hint: use the first exercise.)
(c) Assume that -1 is a square modulo p (which means that p is congruent to 1 modulo 4). Let K be the subgroup of B of the form

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)
$$

where a is a square modulo p. Show that $x^{2} \in K$ and that

$$
\left[K: K \cap x^{-1} K x\right]=p .
$$

(d) Under the same assumption, show that $A^{(3)} \neq \mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)$, and

$$
\left|A^{(3)}\right| \leqslant c^{\prime}|A|^{3 / 2}
$$

for some constant $c^{\prime} \geqslant 0$. (You may use without proof the fact that

$$
\left|\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)\right|=p\left(p^{2}-1\right)
$$

for all p odd.)
Note: one can show that A is a generating set of $\operatorname{SL}_{2}\left(\mathbf{F}_{p}\right)$, so this example shows that the best exponent in Helfgott's Theorem (Theorem 2.6.7 in the notes) cannot be larger than $1 / 2$.

Solutions.

(a) Since $x^{2} \in K$, we can show that any combination of product of 3 elements of A lie in $K \cup K x K \cup x^{-1} K x$. Indeed, observe that

$$
K x^{-1} K=K x K
$$

since any $k_{1} x K_{2}$ can be written as $\left(k_{1} x^{2}\right) x^{-1} k_{2}$, and the other direction follows analogosly, since K is a subgroup so $x^{-1} \in K$. By a similar argument, we can show that $x^{-1} K x=x K x^{-1}$. All the other possibilities follow trivially from the fact that K is a subgroup.
(b) From 1c it holds that

$$
\left|A^{(3)}\right| \leqslant|K|+\left|x^{-1} K x\right|+|K x K| \leqslant 2|K|+c|K|
$$

where c is the index of $K \cap x^{-1} K x$ in K.
(c) First we observe that $x^{2}=-I$, and since -1 is a square modulo p it follows that $x^{2} \in K$. To prove that $\left[K: K \cap x^{-1} K x\right]=p$ we use Lagrange's Theorem. First observe that $|K|=p \frac{p-1}{2}$ and

$$
\left(\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right)=\left(\begin{array}{cc}
-a+b+2 d & -2 a+b+2 d \\
a-b-d & 2 a-b-d
\end{array}\right) .
$$

We must have $a-b-d=0$ so that the product belogs to K. In this case

$$
\left(\begin{array}{cc}
-a+b+2 d & -2 a+b+2 d \\
a-b-d & 2 a-b-d
\end{array}\right)=\left(\begin{array}{cc}
d & -a+d \\
0 & a
\end{array}\right)
$$

and since a is a square modulo p and $a d=1$ it holds that d is also a square modulo p and we can conclude that $\left|K \cap x^{-1} K x\right|=\frac{p-1}{2}$. Thus, from Lagrange's Theorem it holds that $\left|K: K \cap x^{-1} K x\right|=\frac{p \cdot \frac{p-1}{2}}{\frac{p-1}{2}}$.
(d) From item b) it follows that

$$
\begin{equation*}
\left|A^{(3)}\right| \leqslant(2+p) p \frac{p-1}{2}<p\left(p^{2}-1\right)=\left|\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)\right|, \tag{1}
\end{equation*}
$$

so $\left|A^{3}\right| \neq \mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)$. The inequality $\left|A^{(3)}\right| \leqslant c|A|^{3 / 2}$ follows directly from (1) and the fact that $|A|=p \frac{p-1}{2}+2$.

