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D-MATH Additive Combinatorics HS 2023
Prof. Emmanuel Kowalski

Exercise sheet 4

1. Let G be a group and H a subgroup of G. Let x ∈ G, and define I = H ∩ x−1Hx;
this is a subgroup of H.

(a) For h1 and h2 ∈ H, show that

Hxh1 ∩Hxh2 = ∅

unless h1h
−1
2 ∈ I.

(b) If h1h
−1
2 ∈ I, then show that

Hxh1 = Hxh2.

(c) Deduce that the product set HxH (known as a double coset of H) is the
disjoint union of Hxy for y running over a set of representatives of the cosets
hI of I in H. In particular, if H is finite, deduce that

|HxH| = [H : I] |H|.

Solution.

(a) Suppose there exists h, h̃ such that

hxh1 = h̃xh2 ⇔ h1h2
−1 = x−1h−1h̃x,

therefore h1h
−1
2 ∈ I.

On the hand, if h1h
−1
2 = x−1hx ⇒ exh1 = hxh2.

(b) Let hxh1 ∈ Hxh1 and write h1h
−1
2 = x−1h̃x. Then

hxh1 = hxx−1h̃xh2 = hh̃xh2.

The other direction follows similarly.

(c) From the previous item we have

HxH =
⋃

hi∈H
hih

−1
j /∈I

Hxhi,

a diskoint union. Therefore, |HxH| = |H||H : I|.
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2. Let p be a prime number and let

U =
{(1 t

0 1

)
| t ∈ Fp

}
, B =

{(a b
0 d

)
| a, b, d ∈ Fp, ad = 1

}
.

Set U∗ = U ∖ {1}.

(a) Show that U and B are subgroups of SL2(Fp) with |U | = p and |B| = p(p−1).

(b) Let x ∈ SL2(Fp)∖B. Show that the map{ U∗ × U∗ × U∗ → SL2(Fp)
(u, v, w) 7→ uxvx−1w

is injective.

(c) Let A be a symmetric subset of SL2(Fp). Show that either A ⊂ B or

|U∗ ∩ A|3 ⩽ |A(5)|.

(This is a very special case of what are called Larsen–Pink non-concentration
inequalities.)

(d) Let x ∈ SL2(Fp) ∖ B. Let A = U ∪ {x, x−1}. Show that there exists c > 0
and δ > 0, independent of p and x, such that

|A(3)| ⩾ c|A|1+δ.

How large can you get δ to be?

Solution.

(a) Let Tt =

(
1 t
0 1

)
and observe that

T0 = I

Tt1 · Tt+2 = Tt1+t2

(Tt)
−1 = T−t,

so U is a subgroup and |U | = |Fp| = p

To show that B is a subgroup, observe that taking b = 0, a = 1, d = 1 we
have the identity, and(

a1 b1
0 d1

)
·
(
a2 b2
0 d2

)
=

(
a1a2 a1b2 + b1d2
0 d1d2

)
∈ B,

(
a b
0 d

)−1

=

(
d −b
0 a

)
∈ B,

so B is a subgroup. Since a ̸= 0 it holds that |B| = p(p− 1).
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(b) Since x ∈ SL2(Fp)∖B it holds that

x =

(
a b
c d

)
,

where c ̸= 0. We observe that

uxvx−1w = ũxṽx−1w̃ ⇔
(ũ−1u)xvx−1(ww̃−1) = xṽx−1.

Using that

x

(
1 v
0 1

)
x−1 =

(
ad− cav − c −ab+ a2v + a

−cv2 −bc+ acv + a

)
and (

a1 b1
c1 d1

)(
1 t
0 1

)
=

(
a1 a1t+ b1
c1 c1t+ d1

)
(
1 t
0 1

)(
a1 b1
c1 d1

)
=

(
a1 + tc1 b1 + td1

c1 d1,

)
and the fact that c ̸= 0, we conclude that the map must be injective by
comparing all the entries after multiplying the matrices.

(c) If A is not contained in B, let x ∈ A\B. Since A is symmetric, x−1 ∈ A and
we conclude that A(5) is in the image of the map{ U∗ ∩ A\{x, x−1} × U∗ ∩ A\{x, x−1} × U∗ ∩ A\{x, x−1} → SL2(Fp)

(u, v, w) 7→ uxvx−1w.

Since the map is injective, it holds that

|U∗ ∩ A|3 ⩽ |A(5)|.

(d) We define the map

A\{0} × A\{0} → A(3)x−1

(u, v) 7→ uxvx−1.

Following the strategy from the second item, we conclude that the map is
injective, thus |A(3)| ⩾ c|A|2.

3. Let p be an odd prime number. With the same notation as in the previous exercise,
consider

x =

(
1 2
−1 −1

)
∈ SL2(Fp).

Let K be a subgroup of B such that x2 ∈ K. Let A = K ∪ {x, x−1}.
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(a) Show that
A(3) = K ∪KxK ∪ x−1Kx.

(b) Deduce that
|A(3)| ⩽ (2 + c)|K|,

where c is the index of K ∩ x−1Kx in K. (Hint: use the first exercise.)

(c) Assume that −1 is a square modulo p (which means that p is congruent to 1
modulo 4). Let K be the subgroup of B of the form(

a b
0 d

)
where a is a square modulo p. Show that x2 ∈ K and that

[K : K ∩ x−1Kx] = p.

(d) Under the same assumption, show that A(3) ̸= SL2(Fp), and

|A(3)| ⩽ c′|A|3/2

for some constant c′ ⩾ 0. (You may use without proof the fact that

| SL2(Fp)| = p(p2 − 1)

for all p odd.)

Note: one can show that A is a generating set of SL2(Fp), so this example
shows that the best exponent in Helfgott’s Theorem (Theorem 2.6.7 in the
notes) cannot be larger than 1/2.

Solutions.

(a) Since x2 ∈ K, we can show that any combination of product of 3 elements of
A lie in K ∪KxK ∪ x−1Kx. Indeed, observe that

Kx−1K = KxK,

since any k1xK2 can be written as (k1x
2)x−1k2, and the other direction follows

analogosly, since K is a subgroup so x−1 ∈ K. By a similar argument, we can
show that x−1Kx = xKx−1. All the other possibilities follow trivially from
the fact that K is a subgroup.

(b) From 1c it holds that

|A(3)| ⩽ |K|+ |x−1Kx|+ |KxK| ⩽ 2|K|+ c|K|,

where c is the index of K ∩ x−1Kx in K.
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(c) First we observe that x2 = −I, and since −1 is a square modulo p it follows
that x2 ∈ K. To prove that [K : K∩x−1Kx] = p we use Lagrange’s Theorem.
First observe that |K| = pp−1

2
and(

−1 −2
1 1

)(
a b
0 d

)(
1 2
−1 −1

)
=

(
−a+ b+ 2d −2a+ b+ 2d
a− b− d 2a− b− d

)
.

We must have a− b− d = 0 so that the product belogs to K. In this case(
−a+ b+ 2d −2a+ b+ 2d
a− b− d 2a− b− d

)
=

(
d −a+ d
0 a

)
and since a is a square modulo p and ad = 1 it holds that d is also a square
modulo p and we can conclude that |K ∩ x−1Kx| = p−1

2
. Thus, from Lagran-

ge’s Theorem it holds that |K : K ∩ x−1Kx| = p· p−1
2

p−1
2

.

(d) From item b) it follows that

|A(3)| ⩽ (2 + p)p
p− 1

2
< p(p2 − 1) = | SL2(Fp)|, (1)

so |A3| ̸= SL2(Fp). The inequality |A(3)| ⩽ c|A|3/2 follows directly from (1)
and the fact that |A| = pp−1

2
+ 2.
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