
D-MATH Additive Combinatorics HS 2023
Prof. Emmanuel Kowalski

Exercise sheet 5

1. Let G be a finite abelian group. For any subsets A and B of G, we denote

rA,−B(x) = |{(a, b) ∈ A×B | a− b = x}|.

(a) Show that for any sets A and B, we have∑
x∈G

rA,−B(x)
2 =

∑
x∈G

rA,−A(x)rB,−B(x).

(b) We assume from now on that A is a Sidon set in G. Prove that∑
x∈G

rA,−A(x)rB,−B(x) ⩽ |A||B|+ |B|2 − |B|.

(c) Deduce from the previous questions that∑
x∈G

(
rA,−B(x)−

|A||B|
|G|

)2
⩽ |B|(|A| − 1) +

|B|2(|G| − |A|2)
|G|

.

(d) Let also C be a subset of G and define

N = |{(b, c) ∈ B × C | b+ c ∈ A}|.

Show that

N − |A||B||C|
|G|

=
∑
c∈C

(
rA,−B(c)−

|A||B|
|G|

)
.

(e) Deduce that

N − |A||B||C|
|G|

⩽ |C|1/2
(
|B|(|A| − 1) +

|B|2(|G| − |A|2

|G|

)1/2
.

(f) Define δ by |A| = |G| 12 − δ. Show that

N =
|A||B||C|

|G|
+ θ(|B||C|

√
|G|)1/2,

where

θ ⩽ 1 +
|B|
|G|

max(0, δ), θ ⩽ 1 +
|C|
|G|

max(0, δ).
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(g) Show that

|C| |A ∩B| ⩽ |{(x, y) ∈ −C × (B + C) | x+ y ∈ A}|.

(h) Deduce that

|A ∩B| ⩽ |B + C||A|
|G|

+ θ
( |B + C|

|C|

)1/2
|G|1/4.

(a) Observe that∑
x∈G

rA,−B(x)
2 =

∑
x∈G

|{(a, b) ∈ A×B|a− b = x}|2

= |{(a1, b1), (a2, b2) ∈ A×B|a1 − b1 = a2 − b2}|

=
∑
x∈G

|{(a1, a2) ∈ A× A, (b1, b2) ∈ B ×B|a1 − a2 = b1 − b2 = x}|

=
∑
x∈G

rA,−A(x)rB,−B(x).

(b) If A is a Sidon set, then rA,−A(x) ⩽ 1, for all x ∈ G. Thus,

∑
x∈G

rA,−A(x)rB,−B(x) = rA,−A(0)rB,−B(0) +
∑

x∈G∖{0}

rA,−A(x)rB,−B(x)

⩽ |A||B|+ |B|(|B| − 1).

(c)

∑
x∈G

(
rA,−B(x)−

|A||B|
|G|

)2

=
∑
x∈G

rA.−B(x)
2 − 2

|A||B|
|G|

∑
x∈G

rA,−B(x) +

(
|A||B|
|G|

)2

⩽ |A||B|+ |B|2 − |B| − |B|2|A|2

|G|

= |B|(|A| − 1) + |B|2
(
|G| − |A|2

|G|

)
(d) ∑

c∈C

rA,−B(c) =
∑
c∈C

|{(a, b) ∈ A×B|a− b = c}|

=
∑
c∈C

|{(a, b) ∈ A×B|a = b+ c}|

= N.
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(e) From item c) and Cauchy’s Schwartz we have

∑
c∈C

(
rA,−B(c)−

|A||B|
|G|

)
⩽ |C|1/2

(∑
c∈C

(
rA,−B(c)−

|A||B|
|G|

)2
)1/2

⩽ |C|1/2
(
|B|(|A| − 1) + |B|2

(
|G| − |A|2

|G|

))1/2

.

(f) Setting |A| = |G|1/2 − δ in the previous inequality we have

N − |A||B||C|
|G|

⩽ |C|1/2
(
|B|(|G|1/2 − δ − 1) + |B|2

(
|G| − (|G|1/2 − δ)2

|G|

))1/2

⩽ |C|1/2|B|1/2|G|1/4
(
1− δ

|G|1/2
− 1

|G|1/2
+

|B|δ(2|G|1/2 − δ)

|G|3/2

)1/2

.

If δ ⩾ 0 then it holds that

1− δ

|G|1/2
− 1

|G|1/2
+

|B|δ(2|G|1/2 − δ)

|G|3/2
⩽ 1 + 2

|B|
|G|

,

and for δ < 0 we get

|δ|
|G|1/2

− 1

|G|1/2
− |B||δ|2

|G|
− δ1|B|

|G|3/2
⩽ 0

|G||δ| ⩽ |G|+ 2|B||δ||G|1/2 − δ2|B| ⩽ 0.

So, from d), the symmetry of the problem for B and C and the observations
above we conclude the result.

(g) Consider the map f : C × A ∩ B → |{(x, y) ∈ −C × (B + C)|x + y ∈ A},
f(c, b) = (c,−c+ b).

Observe that the map is well-defined because c− c+ b = b ∈ A∩B ⊂ A, and
it is injective. If (x, y) ∈ ( Im)(f) then b = x+ y and c = y − b.

(h) From f) we have

|{(x, y) ∈ −C × (B + C)|x+ y ∈ A}| ⩽ |C||B + C||A|
|G|

θ(|B + C||C||G|1/2)1/2.

Using the equality from the item above we conclude the result.

2. Let p be a prime number. Let P ⊂ F2
p be a set of points and L a set of affine lines

in F2
p. Assume that all lines are given by an equation y = ax + b with a ̸= 0 and

that all (u, v) ∈ P satisfy u ̸= 0.
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(a) Find a large Sidon subset A ⊂ F×
p × Fp and subsets B, C ⊂ F×

p × Fp such
that

|{(b, c) ∈ B × C | b+ c ∈ A}| = |{(p, ℓ) ∈ P × L | p ∈ ℓ}|.

(Hint: write the equations of the lines in the form y = ax + b and the coor-
dinates of the points as (u, v), and interpret the equation au+ b = v.)

(b) Deduce from this and from the previous exercise that

|{(p, ℓ) ∈ P × L | p ∈ ℓ}| = |P ||L|
p

+O(p1/2
√

|P ||L|).

(c) When is this result interesting?

(a) We consider the set A = {(x, x) : x ∈ F×
p } ⊂ F×

p × Fp, endowed with the
operation (x, x) + (y, y) = (xy, x+ y). This set is shown to be a Sidon set in
the Example 2.3.9 in the lecture notes.

Let B = {a,−b), for l : y = ax + b ∈ L} and C = P . We observe that
((a,−b), (u, v)) ∈ B × C is such that (a,−b) + (u, v) ∈ A if and only if
au = −b+ v ⇔ v = au+ b, therefore

|{(b, c) ∈ B × C | b+ c ∈ A}| = |{(p, ℓ) ∈ P × L | p ∈ ℓ}|.

(b) Observe that |B| = |P |, |C| = |L|, |A| = p− 1 and |G| = p(p− 1). Therefore,
using 1f) we get

|{(b, c) ∈ B × C|b+ c ∈ A}| = |A||B||C|
|G|

+ θ(|B||C|
√
|G|)1/2

=
|P ||L|

p
+ θ(

√
|P ||L|(p(p− 1))1/4)

=
|P ||L|

p
+O(p1/2

√
|P ||L|).

(c) We want

|P ||L|
p

≫ p1/2
√

|P ||L| ⇔√
|P ||L| ≫ p3/2 ⇔
|P ||L| ≫ p3.

3. Let p be a prime number. Let A1, A2 be subsets of F×
p and A3 ⊂ Fp. Let G =

F×
p × Fp and consider the subsets

B = {(x, x) | x ∈ A1} ⊂ G, C = A2 × A3 ⊂ G.
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(a) Show that |B ⋆ C| ⩽ |A1A2||A1 + A3|, where ⋆ refers to the group law in G.

(b) Find a large Sidon set A ⊂ G such that |A ∩B| = |B|.
(c) Deduce that there exists a constant c > 0 such that

max(|A1A2|, |A1 + A3|) ⩾ cmin((|A1|p)1/2, |A1|(|A2||A3|p−1)1/2).

(d) When does this result imply a non-trivial bound for the classical sum-product
problem in Fp?

Note: the results in these exercises are due to Cilleruelo, the last one recovering a
previous result of Garaev.

1. Observe that

|B ⋆ C| = |{(a1a2, a1 + a3) ∈ ai ∈ Ai, i = 1, 2, 3}| ⩽ |A1A2||A1 + A3|.

2. As 2a), we consider A = {(x, x) : x ∈ F×
p } ⊂ F×

p × Fp.

3. We use 1h) and3a)

|A1| = |A ∩B| ⩽ |B + C||A|
|G|

+ θ

(
|B + C|

√
|G|

|C|

)1/2

⩽
|A1A2||A1 + A3|

p
+ θ

√
|A1A2|A1 + A3|p

|A2||A3|
.

Denote by x = |A1A2|A1 + A3| and observe that

p|A1| ⩽ x+
θp3/2√
|A1|A3|

x1/2,

therefore we can conclude that

max(|A1A2|, |A1 + A3|) ⩽
√
|A1A2||A1 + A3| ⩾ min

(√
p|A1|,

|A1|
√
|A1||A3|
p1/2

)
.
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