D-MATH Prof. Emmanuel Kowalski

Exercise sheet 6

- 1. Let G be an abelian group and $A \subset G$ finite. For $k \ge 1$, define $\mathcal{F}_k(A)$ to be the size of the largest subset of A which does *not* contain a proper k-term arithmetic progression.
 - (a) For abelian groups G and H such that |G| and |H| are prime numbers, and subsets $A \subset G$ and $B \subset H$, show that $\mathcal{F}_k(A) \mathcal{F}_k(B) \leq \mathcal{F}_k(A \times B)$, with $A \times B \subset G \times H$.
 - (b) For $n \ge 1$, show that a proper 3-term progression in \mathbf{F}_3^n is an affine line in this \mathbf{F}_3 -vector space. Moreover, show that such a line ℓ is of the form $\ell = \{x_1, x_2, x_3\}$ where $x_i = (x_{i,1}, \ldots, x_{i,n})$ and for $j = 1, \ldots, n$, either

$$x_{1,j} = x_{2,j} = x_{3,j}$$

or

$$\{x_{1,j}, x_{2,j}, x_{3,j}\} = \mathbf{F}_3.$$

(c) For $n \ge 1$, show that $\mathcal{F}_3(\mathbf{F}_3^n) \ge 2^n$.

- 2. Construct an example of a coloring of the set of positive integers in two colors, in such a way that there is no *infinite* arithmetic progression of either color.
- 3. For positive integers n_0 , n and k, we write $P_{n_0,n}(k)$ for the k-term arithmetic progression $\{n_0, n_0 + n, \ldots, n_0 + (k-1)n\}$ in positive integers.
 - (a) Let $\gamma > 0$ be a real number. Show that there exists an integer $N_1 \ge 1$ with the following property: if $N \ge N_1$ and $A \subset [N]$ satisfies $|A| \ge \gamma N$, then A contains elements a, b and c with a + c = 2b and $a \ne c$.
 - (b) Let A be a set of positive integers. Let $k \ge 1$ be an integer and $\gamma > 0$ a real number. Show that there exists an integer $K \ge 1$ such that any proper k-term arithmetic progression P of positive integers with $k \ge K$ and $|P \cap A| \ge \gamma k$ contains a proper 3-term progression which is also contained in A.

In the remainder of the exercise, we fix a real number $\delta > 0$, an integer $N \ge 1$ and a subset $A \subset [N]$ such that $|A| \ge \delta N$.

Bitte wenden.

(c) Let $k \ge 1$ be an integer. Show that if n is such that $kn < \delta N/k$, then we have

$$\sum_{\substack{n_0 \ge 1\\ n_0 + (k-1)n \le N}} |P_{n_0,n}(k) \cap A| \ge \delta k \left(1 - \frac{2}{k}\right) N.$$

(Hint: for given $a \in A$, show that if $kn \leq a \leq N - kn$, then a belongs to k among those arithmetic progressions, then estimate how many a satisfy this property.)

(d) For given $n \ge 1$, let \mathcal{G}_n be the set of integers $n_0 \ge 1$ such that

$$|P_{n_0,n}(k) \cap A| \ge \frac{\delta k}{2}.$$

Show that

$$\sum_{\substack{n_0 \ge 1\\ n_0 + (k-1)n \le N}} |P_{n_0,n}(k) \cap A| \le \frac{\delta kN}{2} + k|\mathcal{G}_n|.$$

(e) Deduce that if $kn < \delta N/k$ and k > 8, then we have

$$|\mathcal{G}_n| \geqslant \frac{\delta N}{4}.$$

- (f) Show that the number of values of (n_0, n) such that $|P_{n_0,n}(k) \cap A| \ge \delta k/2$ is at least $\delta^2 N^2/(4k^2)$.
- (g) Let (a, b, c) be elements of A such that a + c = 2b and a < c. Show that if (n_0, n) are such that $\{a, b, c\} \subset P_{n_0, n}(k)$, then n divides b a.
- (h) Deduce that the number of (n_0, n) such that $\{a, b, c\} \subset P_{n_0, n}(k)$ is bounded by a constant depending only on k.
- (i) Conclude that there exists $N_2 \ge 1$ and c > 0, depending only on δ , such that if $N \ge N_2$ and $|A| \ge \delta N$, then A contains at least cN^2 different arithmetic progressions of length 3. (Hint: apply the preceding results for a value k = Kgiven by an application of (b).)

The result of this exercise is known of *Varnavides's Theorem*; a similar argument applies to Szemerédi's Theorem, and shows that a "weak" statement of existence of at least one k-term progression in any suitably dense set in fact implies the existence of *many* progressions.