Exercise sheet 6

1. Let G be an abelian group and $A \subset G$ finite. For $k \geqslant 1$, define $\mathcal{F}_{k}(A)$ to be the size of the largest subset of A which does not contain a proper k-term arithmetic progression.
(a) For abelian groups G and H such that $|G|$ and $|H|$ are prime numbers, and subsets $A \subset G$ and $B \subset H$, show that $\mathcal{F}_{k}(A) \mathcal{F}_{k}(B) \leqslant \mathcal{F}_{k}(A \times B)$, with $A \times B \subset G \times H$.
(b) For $n \geqslant 1$, show that a proper 3-term progression in \mathbf{F}_{3}^{n} is an affine line in this \mathbf{F}_{3}-vector space. Moreover, show that such a line ℓ is of the form $\ell=\left\{x_{1}, x_{2}, x_{3}\right\}$ where $x_{i}=\left(x_{i, 1}, \ldots, x_{i, n}\right)$ and for $j=1, \ldots, n$, either

$$
x_{1, j}=x_{2, j}=x_{3, j}
$$

or

$$
\left\{x_{1, j}, x_{2, j}, x_{3, j}\right\}=\mathbf{F}_{3} .
$$

(c) For $n \geqslant 1$, show that $\mathcal{F}_{3}\left(\mathbf{F}_{3}^{n}\right) \geqslant 2^{n}$.
2. Construct an example of a coloring of the set of positive integers in two colors, in such a way that there is no infinite arithmetic progression of either color.
3. For positive integers n_{0}, n and k, we write $P_{n_{0}, n}(k)$ for the k-term arithmetic progression $\left\{n_{0}, n_{0}+n, \ldots, n_{0}+(k-1) n\right\}$ in positive integers.
(a) Let $\gamma>0$ be a real number. Show that there exists an integer $N_{1} \geqslant 1$ with the following property: if $N \geqslant N_{1}$ and $A \subset[N]$ satisfies $|A| \geqslant \gamma N$, then A contains elements a, b and c with $a+c=2 b$ and $a \neq c$.
(b) Let A be a set of positive integers. Let $k \geqslant 1$ be an integer and $\gamma>0$ a real number. Show that there exists an integer $K \geqslant 1$ such that any proper k-term arithmetic progression P of positive integers with $k \geqslant K$ and $|P \cap A| \geqslant \gamma k$ contains a proper 3 -term progression which is also contained in A.

In the remainder of the exercise, we fix a real number $\delta>0$, an integer $N \geqslant 1$ and a subset $A \subset[N]$ such that $|A| \geqslant \delta N$.
(c) Let $k \geqslant 1$ be an integer. Show that if n is such that $k n<\delta N / k$, then we have

$$
\sum_{\substack{n_{0} \geqslant 1 \\ n_{0}+(k-1) n \leqslant N}}\left|P_{n_{0}, n}(k) \cap A\right| \geqslant \delta k\left(1-\frac{2}{k}\right) N .
$$

(Hint: for given $a \in A$, show that if $k n \leqslant a \leqslant N-k n$, then a belongs to k among those arithmetic progressions, then estimate how many a satisfy this property.)
(d) For given $n \geqslant 1$, let \mathcal{G}_{n} be the set of integers $n_{0} \geqslant 1$ such that

$$
\left|P_{n_{0}, n}(k) \cap A\right| \geqslant \frac{\delta k}{2}
$$

Show that

$$
\sum_{\substack{n_{0} \geqslant 1 \\ n_{0}+(k-1) n \leqslant N}}\left|P_{n_{0}, n}(k) \cap A\right| \leqslant \frac{\delta k N}{2}+k\left|\mathcal{G}_{n}\right| .
$$

(e) Deduce that if $k n<\delta N / k$ and $k>8$, then we have

$$
\left|\mathcal{G}_{n}\right| \geqslant \frac{\delta N}{4} .
$$

(f) Show that the number of values of $\left(n_{0}, n\right)$ such that $\left|P_{n_{0}, n}(k) \cap A\right| \geqslant \delta k / 2$ is at least $\delta^{2} N^{2} /\left(4 k^{2}\right)$.
(g) Let (a, b, c) be elements of A such that $a+c=2 b$ and $a<c$. Show that if $\left(n_{0}, n\right)$ are such that $\{a, b, c\} \subset P_{n_{0}, n}(k)$, then n divides $b-a$.
(h) Deduce that the number of $\left(n_{0}, n\right)$ such that $\{a, b, c\} \subset P_{n_{0}, n}(k)$ is bounded by a constant depending only on k.
(i) Conclude that there exists $N_{2} \geqslant 1$ and $c>0$, depending only on δ, such that if $N \geqslant N_{2}$ and $|A| \geqslant \delta N$, then A contains at least $c N^{2}$ different arithmetic progressions of length 3. (Hint: apply the preceeding results for a value $k=K$ given by an application of (b).)
The result of this exercise is known of Varnavides's Theorem; a similar argument applies to Szemerédi's Theorem, and shows that a "weak" statement of existence of at least one k-term progression in any suitably dense set in fact implies the existence of many progressions.

