Exercise sheet 6

1. Let G be an abelian group and $A \subset G$ finite. For $k \geqslant 1$, define $\mathcal{F}_{k}(A)$ to be the size of the largest subset of A which does not contain a proper k-term arithmetic progression.
(a) For abelian groups G and H such that $|G|$ and $|H|$ are prime numbers, and subsets $A \subset G$ and $B \subset H$, show that $\mathcal{F}_{k}(A) \mathcal{F}_{k}(B) \leqslant \mathcal{F}_{k}(A \times B)$, with $A \times B \subset G \times H$.
(b) For $n \geqslant 1$, show that a proper 3-term progression in \mathbf{F}_{3}^{n} is an affine line in this \mathbf{F}_{3}-vector space. Moreover, show that such a line ℓ is of the form $\ell=\left\{x_{1}, x_{2}, x_{3}\right\}$ where $x_{i}=\left(x_{i, 1}, \ldots, x_{i, n}\right)$ and for $j=1, \ldots, n$, either

$$
x_{1, j}=x_{2, j}=x_{3, j}
$$

or

$$
\left\{x_{1, j}, x_{2, j}, x_{3, j}\right\}=\mathbf{F}_{3} .
$$

(c) For $n \geqslant 1$, show that $\mathcal{F}_{3}\left(\mathbf{F}_{3}^{n}\right) \geqslant 2^{n}$.

Solution.

(a) First we assume that $k<\min (|G|,|H|)$. Let $\tilde{A} \subset A$ and $\tilde{B} \subset B$ be such that $|\tilde{A}|=\mathcal{F}_{k}(A)$ and $|\tilde{B}|=\mathcal{F}_{k}(B)$. We observe that $\tilde{A} \times \tilde{B} \subset A \times B$ does not contain a proper $k-\mathrm{AP}$.
Indeed, if it did, then we would have

$$
\left\{\left(a_{0}, b_{0}\right),\left(a_{0}+a, b_{0}+b, \cdots,\left(a_{0}+(k-1) a, b_{0}+(k-1) b\right)\right\} \subset \tilde{A} \times \tilde{B}\right.
$$

Therefore,

$$
\begin{array}{r}
\left\{a_{0}, a_{0}+a, \cdots a_{0}+(k-1) a\right\} \subset \tilde{A} \\
\left\{b_{0}, b_{0}+b, \cdots, b_{0}+(k-1) b\right\} \subset \tilde{B} .
\end{array}
$$

We conclude that $\left\{a_{0}, a_{0}+a, \cdots a_{0}+(k-1) a\right\}$ is a AP with less than k different elements. So, $a_{0}+i \cdot a=a_{0}+j \cdot a$ for $i \neq 0$, so $(i-j) a=0$. If $a=0$ then $\left\{b_{0}, b_{0}+b, \cdots, b_{0}+(k-1) b\right\}$ has to be a proper k-AP which is a contradiction. Otherwise, since every non-zero element of G has prime order and $k<\min (|G|,|H|)$ we get a contradiction.
A similar argument holds for $k \geqslant \min (|G|,|H|)$.
(b) Recall that an affine line is of the form

$$
\left\{x+a \xi \mid a \in \mathbf{F}_{3}\right\},
$$

where $x \in \mathbf{F}_{3}^{n}$ and $\xi \in \mathbf{F}_{3}^{n} \backslash\{0\}$.
Let $\left(a_{1}, \cdots, a_{n}\right),\left(a_{1}+\tilde{a}_{1}, \cdots a_{n}+\tilde{a}_{n}\right),\left(a_{1}+2 \tilde{a}_{1}, \cdots a_{n}+2 \tilde{a}_{n}\right)$ be a proper 3-AP IN \mathbf{F}_{3}^{n}. Let $x=\left(a_{1}, \cdot, a_{n}\right), \xi=\left(\tilde{a}_{1}, \cdots, \tilde{a}_{n}\right)$ and note that $\xi \neq 0$ because the arithmetic progression we are considering in proper. Therefore

$$
\left\{\left(a_{1}, \cdots, a_{n}\right),\left(a_{1}+\tilde{a}_{1}, \cdots a_{n}+\tilde{a}_{n}\right),\left(a_{1}+2 \tilde{a}_{1}, \cdots a_{n}+2 \tilde{a}_{n}\right)\right\}=\left\{x+a \xi \mid a \in \mathbf{F}_{3}\right\} .
$$

Moreover, observe that if $\tilde{a}_{i} \in\{1,2\}$ then $a_{i}, a_{i}+\tilde{a}_{i}, a_{i}+2 \tilde{a}_{i}$ are all different elements of \mathbf{F}_{3}. If $\tilde{a}_{i}=0$ then $a_{i}, a_{i}=\tilde{a}_{i}=a_{i}+2 \tilde{a}_{i}$.
(c) From the previous item, any set of 2 elements is not a $3-\mathrm{AP}$ in \mathbf{F}_{3}. Writing $\mathbf{F}_{3}^{n}=\mathbf{F}_{3} \times \cdots \times \mathbf{F}_{3}$ and using the first item, we conclude that $\mathcal{F}_{2}\left(F_{3}^{n}\right) \geqslant 2^{n}$.
2. Construct an example of a coloring of the set of positive integers in two colors, in such a way that there is no infinite arithmetic progression of either colour.
Solution. We colour the positive integers in blocks of incresing size:1 is colored black, 2 and 3 are colored white, 4, 5, 6 are colored black, and so on.
Suppose $A=\left\{a_{0}+d k, k \in \mathbb{Z}_{>0}\right\}$ is a infinite AP of one colour and let k be the smallest positive integer such that the block of size $k d$ lies after a_{0}. Therefore, there exists elements of A in this block. Let a be the largest of such elements. Since the size of the next block is $k d+1$, it holds that $a_{n}+d$ is in the next block, there fore a_{n} and $a_{n}+d$ have different colours, which is a contradiction.
3. For positive integers n_{0}, n and k, we write $P_{n_{0}, n}(k)$ for the k-term arithmetic progression $\left\{n_{0}, n_{0}+n, \ldots, n_{0}+(k-1) n\right\}$ in positive integers.
(a) Let $\gamma>0$ be a real number. Show that there exists an integer $N_{1} \geqslant 1$ with the following property: if $N \geqslant N_{1}$ and $A \subset[N]$ satisfies $|A| \geqslant \gamma N$, then A contains elements a, b and c with $a+c=2 b$ and $a \neq c$.
(b) Let A be a set of positive integers. Let $k \geqslant 1$ be an integer and $\gamma>0$ a real number. Show that there exists an integer $K \geqslant 1$ such that any proper k-term arithmetic progression P of positive integers with $k \geqslant K$ and $|P \cap A| \geqslant \gamma k$ contains a proper 3 -term progression which is also contained in A.

In the remainder of the exercise, we fix a real number $\delta>0$, an integer $N \geqslant 1$ and a subset $A \subset[N]$ such that $|A| \geqslant \delta N$.
(c) Let $k \geqslant 1$ be an integer. Show that if n is such that $k n<\delta N / k$, then we have

$$
\sum_{\substack{n_{0} \geqslant 1 \\ n_{0}+(k-1) n \leqslant N}}\left|P_{n_{0}, n}(k) \cap A\right| \geqslant \delta k\left(1-\frac{2}{k}\right) N .
$$

(Hint: for given $a \in A$, show that if $k n \leqslant a \leqslant N-k n$, then a belongs to k among those arithmetic progressions, then estimate how many a satisfy this property.)
(d) For given $n \geqslant 1$, let \mathcal{G}_{n} be the set of integers $n_{0} \geqslant 1$ such that

$$
\left|P_{n_{0}, n}(k) \cap A\right| \geqslant \frac{\delta k}{2}
$$

Show that

$$
\sum_{\substack{n_{0} \geqslant 1 \\ n_{0}+(k-1) n \leqslant N}}\left|P_{n_{0}, n}(k) \cap A\right| \leqslant \frac{\delta k N}{2}+k\left|\mathcal{G}_{n}\right| .
$$

(e) Deduce that if $k n<\delta N / k$ and $k>8$, then we have

$$
\left|\mathcal{G}_{n}\right| \geqslant \frac{\delta N}{4} .
$$

(f) Show that the number of values of $\left(n_{0}, n\right)$ such that $\left|P_{n_{0}, n}(k) \cap A\right| \geqslant \delta k / 2$ is at least $\delta^{2} N^{2} /\left(4 k^{2}\right)$.
(g) Let (a, b, c) be elements of A such that $a+c=2 b$ and $a<c$. Show that if $\left(n_{0}, n\right)$ are such that $\{a, b, c\} \subset P_{n_{0}, n}(k)$, then n divides $b-a$.
(h) Deduce that the number of $\left(n_{0}, n\right)$ such that $\{a, b, c\} \subset P_{n_{0}, n}(k)$ is bounded by a constant depending only on k.
(i) Conclude that there exists $N_{2} \geqslant 1$ and $c>0$, depending only on δ, such that if $N \geqslant N_{2}$, then A contains at least $c N^{2}$ different arithmetic progressions of length 3 . (Hint: apply the preceeding results for a value $k=K$ given by an application of (b).)
The result of this exercise is known of Varnavides's Theorem; a similar argument applies to Szemerédi's Theorem, and shows that a "weak" statement of existence of at least one k-term progression in any suitably dense set in fact implies the existence of many progressions.

Solution.

(a) We recall Roth's Theorem:

$$
\lim _{n \rightarrow \infty} \frac{\mathcal{F}_{n}(N)}{N}=0
$$

Let N_{1} be such that, for all $N \geqslant N_{1}$ it holds that

$$
\left|\frac{\mathcal{F}_{3}(N)}{N}\right|<\lambda .
$$

therefore, if $|A| \geqslant \lambda N$, then A must contain a proper $3-\mathrm{AP}$.
(b) We take $K=N_{1}$ as in the previous item, and apply the result to $P \cap A$.
(c) Let $a \in A$ and suppose that $k n \leqslant a \leqslant N-k n$. We write

$$
\begin{aligned}
& a=a+0 \cdot n \\
& a=a-n+1 \cdot n \\
& (\cdots) \\
& a=(a-(k-1) n)+(k-1) n .
\end{aligned}
$$

Observe that $a-(k-1) n \geqslant 1$ from the hypothesis. Thefore, there a belogs to k among arithmetic progressions of the form $P_{n_{0}, n}(k)$. We also observe that

$$
|A \cap\{k n \leqslant a \leqslant N-k n\}| \geqslant \delta N-2 k n \leqslant \delta N-\frac{2 \delta N}{k}
$$

therefore

$$
\sum_{\substack{n_{0} \geqslant 1 \\ n_{0}+(k-1) n \leqslant N}}\left|P_{n_{0}, n}(k) \cap A\right| \geqslant k\left(\delta N-\frac{2 \delta N}{k}\right)=\delta k\left(1-\frac{2}{k}\right) N .
$$

(d) There are at most N elements n_{0} such that $\left|P_{n_{0}, n}(k) \cap A\right| \leqslant \frac{\delta k}{2}$. If $n_{0} \in \mathcal{G}_{n}$ we bound $P_{n_{0}, n}(k) \cap A$ by k. Therefore,

$$
\sum_{\substack{n_{0} \geqslant 1 \\ n_{0}+(k-1) n \leqslant N}}\left|P_{n_{0}, n}(k) \cap A\right| \leqslant \frac{\delta k N}{2}+k\left|\mathcal{G}_{n}\right|
$$

(e) From the two previous items we have

$$
\delta k\left(1-\frac{2}{k}\right) N \leqslant \frac{\delta k N}{2}+k\left|\mathcal{G}_{n}\right|,
$$

so

$$
\left|\mathcal{G}_{n}\right| \geqslant \delta N\left(1-\frac{2}{k}-\frac{1}{2}\right) \geqslant \frac{\delta N}{4},
$$

where we used that $k>8$ in the last inequality.
(f) From the previous item, the number of $\left(n_{0}, n\right)$ such that $\left|P_{n_{0}, n}(k) \cap A\right| \geqslant \delta k / 2$ is at least $\delta^{2} N^{2} /\left(4 k^{2}\right)$ is

$$
\sum_{n \leqslant \frac{\delta N}{k^{2}}}\left|\mathcal{G}_{n}\right| \geqslant \frac{\delta N}{4} \cdot \frac{\delta N}{k^{2}}=\frac{\delta^{2} N^{2}}{4 k^{2}}
$$

(g) If $\{a, b, c\} \subset P_{n_{0}, n}(k)$ then it holds that

$$
\begin{aligned}
a & =n_{0}+l_{1} n \\
b & =n_{0}+l_{2} n \\
c & =n_{0}+l_{3} n
\end{aligned}
$$

and $b-a=\left(l_{2}-l_{1}\right) n$, so n divides $b-a$.
(h) Fix $\{a, b, c\} \subset[N]$ such that $a<c$ and $a+c=2 n$. From the previous item, the common different of this AP is $d n$.
If $b-a=d n$ then we must have

$$
a=n_{0}+j d n
$$

for $0 \leqslant j \leqslant k-3$, which implies that there are at most k of such progressions. Also, it holds that $2 d<k$ so the number of $\left(n_{0}, n\right)$ such that $\{a, b, c\} \subset$ $P_{n_{0}, n}(k)$ is bounded by $\frac{1}{2} k(k-2)$.
(i) Take $N_{2}=K$ such that for all $k \geqslant K$ such that if P is a proper $k-\mathrm{AP}$ with $|A \cap P| \geqslant \frac{\delta}{2} k$, then A contains a proper 3-AP. The existance of such K was proven in item b).
From item f) there exist at least $\frac{\delta^{2} N^{2}}{4 k^{2}}$ values of $\left(n_{0}, n\right)$ such that

$$
\left|P_{n_{0}, n}(k) \cap A\right| \geqslant \frac{\delta k}{2}
$$

From h), we are counting each proper $3-\mathrm{AP}$ at most $\frac{1}{2} k(k-2)$ times, so there exists at least $c N^{2}$ proper $3-\mathrm{AP}$ in A, where c is a constant that depends only on k and δ.

