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Exercise sheet 6

1. Let G be an abelian group and A C G finite. For k£ > 1, define F;(A) to be the
size of the largest subset of A which does not contain a proper k-term arithmetic
progression.

(a) For abelian groups G and H such that |G| and |H| are prime numbers, and
subsets A C G and B C H, show that Fj(A) Fr(B) < Fr(A x B), with
AxBCGxH.

(b) For n > 1, show that a proper 3-term progression in F% is an affine line
in this Fs-vector space. Moreover, show that such a line ¢ is of the form
0 = {x1, w3, w3} where z; = (x;1,...,2,,) and for j =1, ..., n, either

T1,5 = T2,5 = T35
or
{71,205, 735} = Fs.

(c) For n > 1, show that F3(F%) > 2"
Solution.

(a) First we assume that & < min(|G|, |H|). Let Ac A~and~£~3 C B be such that
|A| = Fi(A) and |B| = Fi(B). We observe that A x B C A x B does not
contain a proper k—AP.

Indeed, if it did, then we would have
{(ag,bo), (ap +a,bg +b,- -+, (ap + (k — 1)a, by + (k — 1)b)} € A x B.
Therefore,
{ag,a0 +a,---ag+ (k—1)a} C A
{bo,bo+b,--- b+ (k—1)b} C B.

We conclude that {ag,ag + a,---ag + (k — 1)a} is a AP with less than k
different elements. So, ag +i-a = ap+ j-a for i # 0, so (i — j)a = 0. If
a =0 then {bg, by +b,--- ,by + (k — 1)b} has to be a proper k-AP which is a
contradiction. Otherwise, since every non-zero element of G has prime order
and k < min(|G|, |H|) we get a contradiction.

A similar argument holds for k£ > min(|G|, |H|).
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(b) Recall that an affine line is of the form
{z + ala € Fs},

where x € F} and £ € F% ~ {0}.

Let (ay,- -+ ,a,), (a1 +aq, - a,+ay,), (a1 +2aq, - - - a, +2a,) be a proper 3-AP
IN Fj. Let z = (a1,-,a,),€ = (a1, -+, a,) and note that & # 0 because the
arithmetic progression we are considering in proper. Therefore

{(ala T aa'n)a (al + dl) 7 +C~Ln)a (al + lea sl + Qan)} - {ZE +CL€|6L c Fg}

Moreover, observe that if a; € {1,2} then a;, a; + a@;, a; + 2a; are all different
elements of F3. If a; = 0 then a;, a; = a; = a; + 2a;.

(c) From the previous item, any set of 2 elements is not a 3—AP in F3. Writing
F} =F; x --- x F3 and using the first item, we conclude that Fo(F}) > 2".

2. Construct an example of a coloring of the set of positive integers in two colors, in
such a way that there is no infinite arithmetic progression of either colour.

Solution. We colour the positive integers in blocks of incresing size:1 is colored
black, 2 and 3 are colored white, 4, 5,6 are colored black, and so on.

Suppose A = {ag + dk,k € Z~o} is a infinite AP of one colour and let k£ be the
smallest positive integer such that the block of size kd lies after ag. Therefore,
there exists elements of A in this block. Let a be the largest of such elements.
Since the size of the next block is kd + 1, it holds that a,, + d is in the next block,
there fore a,, and a,, + d have different colours, which is a contradiction.

3. For positive integers ng, n and k, we write P,, (k) for the k-term arithmetic
progression {ng,ng +n,...,ny + (k — 1)n} in positive integers.

(a) Let v > 0 be a real number. Show that there exists an integer N; > 1 with
the following property: if N > N; and A C [NV] satisfies |A| > v, then A
contains elements a, b and ¢ with a + ¢ = 2b and a # c.

(b) Let A be a set of positive integers. Let £ > 1 be an integer and v > 0 a real
number. Show that there exists an integer K > 1 such that any proper k-term
arithmetic progression P of positive integers with k > K and |P N A| > vk
contains a proper 3-term progression which is also contained in A.

In the remainder of the exercise, we fix a real number § > 0, an integer N > 1
and a subset A C [N] such that |A| > 0N.

(c) Let £ > 1 be an integer. Show that if n is such that kn < dN/k, then we
have 9
Y Pualk) N A2 6k:(1 - E) N.

no=>1
no+(k—1)n<N



(Hint: for given a € A, show that if kn < a < N — kn, then a belongs to k
among those arithmetic progressions, then estimate how many a satisfy this

property.)
(d) For given n > 1, let G, be the set of integers ny > 1 such that
ok
|Pn0,n(k> N A| 2 ?
Show that

O0kN
Do Punlk) DA< == + kG|

no=1
no+(k—1)n<N

(e) Deduce that if kn < IN/k and k > 8, then we have

IN
= —.
6.1 >
(f) Show that the number of values of (ng,n) such that |P,, (k) N A| > 0k/2 is
at least 62N?/(4k?).

(g) Let (a,b,c) be elements of A such that a + ¢ = 2b and a < ¢. Show that if
(no,n) are such that {a,b,c} C P,, ,(k), then n divides b — a.

(h) Deduce that the number of (ng,n) such that {a,b,c} C P,, (k) is bounded
by a constant depending only on k.

(i) Conclude that there exists Ny > 1 and ¢ > 0, depending only on ¢, such that

if N > Ny, then A contains at least ¢cN? different arithmetic progressions of
length 3. (Hint: apply the preceeding results for a value k = K given by an
application of (b).)
The result of this exercise is known of Varnavides’s Theorem; a similar argu-
ment applies to Szemerédi’s Theorem, and shows that a “weak” statement of
existence of at least one k-term progression in any suitably dense set in fact
implies the existence of many progressions.

Solution.

(a) We recall Roth’s Theorem:

. Fu(N)
Jm =
Let Nj be such that, for all N > N; it holds that

LTI

= 0.

therefore, if |A| > AN, then A must contain a proper 3—AP.
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(b) We take K = Nj as in the previous item, and apply the result to P N A.
(c¢) Let a € A and suppose that kn < a < N — kn. We write

a=a+0-n
a=a—n+1-n

a=(a—(k—1)n)+ (k—1)n.

Observe that a — (k—1)n > 1 from the hypothesis. Thefore, there a belogs to
k among arithmetic progressions of the form P, , (k). We also observe that

20N
|Aﬂ{kn<a<N—kn}\>5N—2kn<5N—5T,

therefore

S Pualk) N A=k <5N - %TN) - 5/<:(1 - 2)1\/.

no>1
no+(k—1)n<N

(d) There are at most N elements ng such that | Py, (k) N A] < 2. If ny € G,
we bound P, (k) N A by k. Therefore,

SkN
> |Pun(k) N Al < —5 k|Gl

no=1
no+(k—1)n<N

(e) From the two previous items we have
2 OkN

SO

2 1 ON
20N |(1——-—=) > —,
(Gnl =0 ( k 2) 4

where we used that & > 8 in the last inequality.
(f) From the previous item, the number of (ng, n) such that |P,, ,(k)NA| > 0k/2
is at least 02N?/(4k?) is

Z|g|>5N SN §2N?
T4 k2 4k2

SN
ngk—Q




(g) If {a,b,c} C P, (k) then it holds that

a=mng+hn
b:n0+l2n

c=ng+Il3n

and b —a = (I — I;)n, so n divides b — a.
(h) Fix {a,b,c} C [N] such that a < ¢ and a + ¢ = 2n. From the previous item,
the common different of this AP is dn.

If b — a = dn then we must have

a=mng+ jdn

for 0 < j < k—3, which implies that there are at most k& of such progressions.

Also, it holds that 2d < k so the number of (ng,n) such that {a,b,c} C
P,yn(k) is bounded by k(k — 2).

(i) Take Ny = K such that for all £ > K such that if P is a proper k—AP with
|ANP| > %k, then A contains a proper 3—AP. The existance of such K was
proven in item b).

‘ié\f values of (ng,n) such that

From item f) there exist at least

| Py (k) N A| > %

From h), we are counting each proper 3—AP at most $k(k—2) times, so there
exists at least ¢cN? proper 3—AP in A, where c is a constant that depends
only on k and §.



