
Bitte wenden.

D-MATH Additive Combinatorics HS 2023
Prof. Emmanuel Kowalski

Exercise sheet 6

1. Let G be an abelian group and A ⊂ G finite. For k ⩾ 1, define Fk(A) to be the
size of the largest subset of A which does not contain a proper k-term arithmetic
progression.

(a) For abelian groups G and H such that |G| and |H| are prime numbers, and
subsets A ⊂ G and B ⊂ H, show that Fk(A)Fk(B) ⩽ Fk(A × B), with
A×B ⊂ G×H.

(b) For n ⩾ 1, show that a proper 3-term progression in Fn
3 is an affine line

in this F3-vector space. Moreover, show that such a line ℓ is of the form
ℓ = {x1, x2, x3} where xi = (xi,1, . . . , xi,n) and for j = 1, . . . , n, either

x1,j = x2,j = x3,j

or
{x1,j, x2,j, x3,j} = F3.

(c) For n ⩾ 1, show that F3(F
n
3 ) ⩾ 2n.

Solution.

(a) First we assume that k < min(|G|, |H|). Let Ã ⊂ A and B̃ ⊂ B be such that
|Ã| = Fk(A) and |B̃| = Fk(B). We observe that Ã × B̃ ⊂ A × B does not
contain a proper k−AP.

Indeed, if it did, then we would have

{(a0, b0), (a0 + a, b0 + b, · · · , (a0 + (k − 1)a, b0 + (k − 1)b)} ⊂ Ã× B̃.

Therefore,

{a0, a0 + a, · · · a0 + (k − 1)a} ⊂ Ã

{b0, b0 + b, · · · , b0 + (k − 1)b} ⊂ B̃.

We conclude that {a0, a0 + a, · · · a0 + (k − 1)a} is a AP with less than k
different elements. So, a0 + i · a = a0 + j · a for i ̸= 0, so (i − j)a = 0. If
a = 0 then {b0, b0 + b, · · · , b0 + (k − 1)b} has to be a proper k-AP which is a
contradiction. Otherwise, since every non-zero element of G has prime order
and k < min(|G|, |H|) we get a contradiction.

A similar argument holds for k ⩾ min(|G|, |H|).
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(b) Recall that an affine line is of the form

{x+ aξ|a ∈ F3},

where x ∈ Fn
3 and ξ ∈ Fn

3 ∖ {0}.
Let (a1, · · · , an), (a1+ ã1, · · · an+ ãn), (a1+2ã1, · · · an+2ãn) be a proper 3-AP
IN Fn

3 . Let x = (a1, ·, an), ξ = (ã1, · · · , ãn) and note that ξ ̸= 0 because the
arithmetic progression we are considering in proper. Therefore

{(a1, · · · , an), (a1 + ã1, · · · an + ãn), (a1 + 2ã1, · · · an + 2ãn)} = {x+ aξ|a ∈ F3}.

Moreover, observe that if ãi ∈ {1, 2} then ai, ai + ãi, ai + 2ãi are all different
elements of F3. If ãi = 0 then ai, ai = ãi = ai + 2ãi.

(c) From the previous item, any set of 2 elements is not a 3−AP in F3. Writing
Fn

3 = F3 × · · · × F3 and using the first item, we conclude that F2(F
n
3 ) ⩾ 2n.

2. Construct an example of a coloring of the set of positive integers in two colors, in
such a way that there is no infinite arithmetic progression of either colour.

Solution. We colour the positive integers in blocks of incresing size:1 is colored
black, 2 and 3 are colored white, 4, 5, 6 are colored black, and so on.

Suppose A = {a0 + dk, k ∈ Z>0} is a infinite AP of one colour and let k be the
smallest positive integer such that the block of size kd lies after a0. Therefore,
there exists elements of A in this block. Let a be the largest of such elements.
Since the size of the next block is kd+1, it holds that an + d is in the next block,
there fore an and an + d have different colours, which is a contradiction.

3. For positive integers n0, n and k, we write Pn0,n(k) for the k-term arithmetic
progression {n0, n0 + n, . . . , n0 + (k − 1)n} in positive integers.

(a) Let γ > 0 be a real number. Show that there exists an integer N1 ⩾ 1 with
the following property: if N ⩾ N1 and A ⊂ [N ] satisfies |A| ⩾ γN , then A
contains elements a, b and c with a+ c = 2b and a ̸= c.

(b) Let A be a set of positive integers. Let k ⩾ 1 be an integer and γ > 0 a real
number. Show that there exists an integerK ⩾ 1 such that any proper k-term
arithmetic progression P of positive integers with k ⩾ K and |P ∩ A| ⩾ γk
contains a proper 3-term progression which is also contained in A.

In the remainder of the exercise, we fix a real number δ > 0, an integer N ⩾ 1
and a subset A ⊂ [N ] such that |A| ⩾ δN .

(c) Let k ⩾ 1 be an integer. Show that if n is such that kn < δN/k, then we
have ∑

n0⩾1
n0+(k−1)n⩽N

|Pn0,n(k) ∩ A| ⩾ δk
(
1− 2

k

)
N.
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Bitte wenden.

(Hint: for given a ∈ A, show that if kn ⩽ a ⩽ N − kn, then a belongs to k
among those arithmetic progressions, then estimate how many a satisfy this
property.)

(d) For given n ⩾ 1, let Gn be the set of integers n0 ⩾ 1 such that

|Pn0,n(k) ∩ A| ⩾ δk

2
.

Show that ∑
n0⩾1

n0+(k−1)n⩽N

|Pn0,n(k) ∩ A| ⩽ δkN

2
+ k|Gn|.

(e) Deduce that if kn < δN/k and k > 8, then we have

|Gn| ⩾
δN

4
.

(f) Show that the number of values of (n0, n) such that |Pn0,n(k) ∩ A| ⩾ δk/2 is
at least δ2N2/(4k2).

(g) Let (a, b, c) be elements of A such that a + c = 2b and a < c. Show that if
(n0, n) are such that {a, b, c} ⊂ Pn0,n(k), then n divides b− a.

(h) Deduce that the number of (n0, n) such that {a, b, c} ⊂ Pn0,n(k) is bounded
by a constant depending only on k.

(i) Conclude that there exists N2 ⩾ 1 and c > 0, depending only on δ, such that
if N ⩾ N2, then A contains at least cN2 different arithmetic progressions of
length 3. (Hint: apply the preceeding results for a value k = K given by an
application of (b).)

The result of this exercise is known of Varnavides’s Theorem; a similar argu-
ment applies to Szemerédi’s Theorem, and shows that a “weak” statement of
existence of at least one k-term progression in any suitably dense set in fact
implies the existence of many progressions.

Solution.

(a) We recall Roth’s Theorem:

lim
n→∞

Fn(N)

N
= 0.

Let N1 be such that, for all N ⩾ N1 it holds that∣∣∣∣F3(N)

N

∣∣∣∣ < λ.

therefore, if |A| ⩾ λN , then A must contain a proper 3−AP.
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(b) We take K = N1 as in the previous item, and apply the result to P ∩ A.

(c) Let a ∈ A and suppose that kn ⩽ a ⩽ N − kn. We write

a = a+ 0 · n
a = a− n+ 1 · n
( · · · )
a = (a− (k − 1)n) + (k − 1)n.

Observe that a− (k−1)n ⩾ 1 from the hypothesis. Thefore, there a belogs to
k among arithmetic progressions of the form Pn0,n(k). We also observe that

|A ∩ {kn ⩽ a ⩽ N − kn}| ⩾ δN − 2kn ⩽ δN − 2δN

k
,

therefore ∑
n0⩾1

n0+(k−1)n⩽N

|Pn0,n(k) ∩ A| ⩾ k

(
δN − 2δN

k

)
= δk

(
1− 2

k

)
N.

(d) There are at most N elements n0 such that |Pn0,n(k) ∩ A| ⩽ δk
2
. If n0 ∈ Gn

we bound Pn0,n(k) ∩ A by k. Therefore,∑
n0⩾1

n0+(k−1)n⩽N

|Pn0,n(k) ∩ A| ⩽ δkN

2
+ k|Gn|.

(e) From the two previous items we have

δk

(
1− 2

k

)
N ⩽

δkN

2
+ k|Gn|,

so

|Gn| ⩾ δN

(
1− 2

k
− 1

2

)
⩾

δN

4
,

where we used that k > 8 in the last inequality.

(f) From the previous item, the number of (n0, n) such that |Pn0,n(k)∩A| ⩾ δk/2
is at least δ2N2/(4k2) is∑

n⩽ δN
k2

|Gn| ⩾
δN

4
· δN
k2

=
δ2N2

4k2
.
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(g) If {a, b, c} ⊂ Pn0,n(k) then it holds that

a = n0 + l1n

b = n0 + l2n

c = n0 + l3n

and b− a = (l2 − l1)n, so n divides b− a.

(h) Fix {a, b, c} ⊂ [N ] such that a < c and a + c = 2n. From the previous item,
the common different of this AP is dn.

If b− a = dn then we must have

a = n0 + jdn

for 0 ⩽ j ⩽ k−3, which implies that there are at most k of such progressions.

Also, it holds that 2d < k so the number of (n0, n) such that {a, b, c} ⊂
Pn0,n(k) is bounded by 1

2
k(k − 2).

(i) Take N2 = K such that for all k ⩾ K such that if P is a proper k−AP with
|A ∩ P | ⩾ δ

2
k, then A contains a proper 3−AP. The existance of such K was

proven in item b).

From item f) there exist at least δ2N2

4k2
values of (n0, n) such that

|Pn0,n(k) ∩ A| ⩾ δk

2
.

From h), we are counting each proper 3−AP at most 1
2
k(k−2) times, so there

exists at least cN2 proper 3−AP in A, where c is a constant that depends
only on k and δ.
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