Problem 1. (Gathmann exercise 1.13) Show that the equation of ideals

$$(x^{3} - x^{2}, x^{2}y - x^{2}, xy - y, y^{2} - y) = (x^{2}, y) \cap (x - 1, y - 1)$$

holds in the polynomial ring $\mathbb{C}[x, y]$. Is this a radical ideal? What is the vanishing locus of the ideal in $\mathbb{A}^2_{\mathbb{C}}$?

Problem 2. Let R be a ring. An element $e \in R$ such that $e^2 = e$ is called an *idempotent*. An idempotent $e \in R$ is called trivial if e = 0 or e = 1.

- 1. Prove that R is a product of two nontrivial rings if and only if R has a nontrivial idempotent.
- 2. We say a ring R is *local* if it has a unique maximal ideal. Show that if $e \in R$ is an idempotent in a local ring R, then e is trivial.

Problem 3. (Gathmann exercise 2.23(a)) Let *R* be a ring and *I* an ideal of *R*. We say a prime ideal \mathfrak{p} containing *I* is *minimal* over *I* if for every prime ideal \mathfrak{q} such that

 $I \subset \mathfrak{q} \subset \mathfrak{p},$

we have q = p. Prove that for every ideal *I* in *R* there exists a minimal prime p.

Problem 4. Let k be a field, A = k[x, y]/(xy - 1), and B = k[z]. Show that any morphism of k-algebras $\varphi : A \to B$ maps x to a constant $c \in k$.