Problem 1. (Gathmann exercise 1.13) Show that the equation of ideals

$$
\left(x^{3}-x^{2}, x^{2} y-x^{2}, x y-y, y^{2}-y\right)=\left(x^{2}, y\right) \cap(x-1, y-1)
$$

holds in the polynomial ring $\mathbb{C}[x, y]$. Is this a radical ideal? What is the vanishing locus of the ideal in $\mathbb{A}_{\mathbb{C}}^{2}$?

Problem 2. Let R be a ring. An element $e \in R$ such that $e^{2}=e$ is called an idempotent. An idempotent $e \in R$ is called trivial if $e=0$ or $e=1$.

1. Prove that R is a product of two nontrivial rings if and only if R has a nontrivial idempotent.
2. We say a ring R is local if it has a unique maximal ideal. Show that if $e \in R$ is an idempotent in a local ring R, then e is trivial.

Problem 3. (Gathmann exercise 2.23(a)) Let R be a ring and I an ideal of R. We say a prime ideal \mathfrak{p} containing I is minimal over I if for every prime ideal \mathfrak{q} such that

$$
I \subset \mathfrak{q} \subset \mathfrak{p}
$$

we have $\mathfrak{q}=\mathfrak{p}$. Prove that for every ideal I in R there exists a minimal prime \mathfrak{p}.

Problem 4. Let k be a field, $A=k[x, y] /(x y-1)$, and $B=k[z]$. Show that any morphism of k-algebras $\varphi: A \rightarrow B$ maps x to a constant $c \in k$.

