Problem 1. Let *R* be a ring. Show that a closed subset $Z \subset \text{Spec}(R)$ is irreducible if and only if $Z = V(\mathfrak{p})$ for a prime \mathfrak{p} .

Problem 2. Let *R* be a ring, *M* an *R* module, and $N \subset M$ a submodule. Show that $\text{Supp}(M) = \text{Supp}(N) \cup \text{Supp}(M/N)$.

Problem 3. A topological space X is called Noetherian if its open subsets satisfy the ascending chain condition (any chain of open subset $U_0 \subset U_1 \subset \ldots$ eventually stabilizes). Show that if a ring R is Noetherian, then Spec(R) is a Noetherian topological space. What about the converse?

Problem 4. Let *R* be a ring. Show that Spec(R) is irreducible if and only if the nilradical $\sqrt{(0)}$ is prime.