Problem 1. Compute $\operatorname{dim} \mathbb{C}[x, y] /\left(y^{2}-x^{3}-x^{2}\right)$ and $\operatorname{dim}_{\mathbb{C}} \mathfrak{m} / \mathfrak{m}^{2}$ where \mathfrak{m} is the maximal ideal (x, y) in $\mathbb{C}[x, y] /\left(y^{2}-x^{3}-x^{2}\right)$. Compute $\operatorname{dim}_{\mathbb{C}} \mathfrak{n} / \mathfrak{n}^{2}$ for any other maximal ideal \mathfrak{n}.

Problem 2. Prove that a module M over a ring R is Noetherian and Artinian if and only if it has finite length over R.

Problem 3. Suppose that M is a module over a ring R and M has a finite composition series. Show that any two composition series for a module M over R have the same successive quotients, up to reordering.

