Problem 1. Compute dim $\mathbb{C}[x, y]/(y^2 - x^3 - x^2)$ and dim_{\mathbb{C}} $\mathfrak{m}/\mathfrak{m}^2$ where \mathfrak{m} is the maximal ideal (x, y) in $\mathbb{C}[x, y]/(y^2 - x^3 - x^2)$. Compute dim_{\mathbb{C}} $\mathfrak{n}/\mathfrak{n}^2$ for any other maximal ideal \mathfrak{n} .

Problem 2. Prove that a module M over a ring R is Noetherian and Artinian if and only if it has finite length over R.

Problem 3. Suppose that M is a module over a ring R and M has a finite composition series. Show that any two composition series for a module M over R have the same successive quotients, up to reordering.