Problem 1.

The following lemma will be useful for our purposes:
Lemma 0.1. If R is a commutative ring and $I, J \subset R$ are ideals such that $I+J=R$ then $I \cap J=I J$.

Proof. Indeed, it is always the case that $I J \subset I \cap J$ and from our assumption we have

$$
I \cap J=(I+J) \cdot(I \cap J)=I \cdot(I \cap J)+J \cdot(I \cap J) \subset I J+J I=I J
$$

Thus $I J=I \cap J$.
Now as $y-(y-1)=1$ we can apply the lemma to the ideals $\left(x^{2}, y\right)$ and $(x-1, y-1)$ in $\mathbb{C}[x, y]$ so $\left(x^{2}, y\right) \cap(x-1, y-1)=\left(x^{2}, y\right) \cdot(x-1, y-1)=\left(x^{2}(x-1), x^{2}(y-1), y(x-1), y(y-1)\right)$.
This ideal is not radical as the element $(x(x-1))^{2}$ belongs to it whereas $x(x-1)$ does not as it does not belong to the ideal $\left(x^{2}, y\right)$.

Problem 2.1.

Recall the Chinese remainder theorem:
Theorem 0.2. If R is a commutative ring and $I, J \subset R$ are ideals such that $I+J=R$ then $R / I J \simeq R / I \oplus R / J$.

If R has a nontrivial idempotent e we have $e(e-1)=0$. Neither e nor $e-1$ is invertible, otherwise multiplying the identity by the corresponding inverse would yield $e=0$ ore $e-1=0$ contradicting the assumption. So we have

$$
R \simeq R /(0)=R /(e(e-1))=R /(e) \oplus R /(e-1)
$$

yielding a non-trivial decomposition of R into a direct product of two rings. If $R=R_{1} \oplus R_{2}$ an element $(0,1)$ is a non-trivial idempotent.

Problem 2.2.

Denote by \mathfrak{m} the maximal ideal of R. Assume there is a non-trivial idempotent $e \in R$. As we've seen $e-1$ as well as e is not invertible, thus $e-1 \in \mathfrak{m}$ and $e \in \mathfrak{m}$, hence $1=e-(e-1) \in \mathfrak{m}$ leading to a contradiction.

Problem 3.

Denote by X the set of all primes containing I. It is naturally a poset ordered by inclusion and X is non-empty as every ideal is contained in a maximal ideal which is prime.

Let us verify that X satisfies the condition of Zorn's lemma. Indeed if $\left\{\mathfrak{p}_{i}\right\}$ is a chain in X then $J:=\bigcap_{i} \mathfrak{p}_{i}$ is an ideal containing I. Let us verify that it is prime: take $a, b \in R$ such that $a b \in J$. Assume that $a, b \notin J$. Then we can find i, j such that $a \notin \mathfrak{p}_{i}, b \notin \mathfrak{p}_{j}$. But as $\left\{\mathfrak{p}_{k}\right\}$ form a chain we have $\mathfrak{p}_{i} \subset \mathfrak{p}_{j}$ or
$\mathfrak{p}_{j} \subset \mathfrak{p}_{i}$ therefore $a, b \notin \mathfrak{p}_{i}$ or $a, b \notin \mathfrak{p}_{j}$ hence the same is true for $a b$ as \mathfrak{p}_{k} are prime ideals. This is a contradiction.

Applying Zorn's lemma to X yields a minimal prime containing I.

Problem 4.

As $x y=1 \in A$ we have $\phi(x) \phi(y)=1 \in B$. In particular $\phi(x)$ is invertible, hence it should be a degree 0 polynomial in $k[x]$ i.e. a constant.

