Problem 1.

We claim that $\mathbb{Q} / \mathbb{Z} \otimes \mathbb{Q} / \mathbb{Z} \simeq 0$.
Indeed, $\mathbb{Q} / \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q} / \mathbb{Z}$ is generated by the tensors $\alpha \otimes \beta$, where $\alpha, \beta \in \mathbb{Q} / \mathbb{Z}$. Write $\frac{p}{q}$ and $\frac{m}{n}$ with integer p, q, m, n for representatives of α, β in \mathbb{Q}. We have

$$
\frac{p}{q} \otimes \frac{m}{n}=\frac{n p}{n q} \otimes \frac{m}{n}=n \frac{p}{n q} \otimes \frac{m}{n}=\frac{p}{n q} \otimes n \frac{m}{n}=\frac{p}{n q} \otimes m .
$$

But $m=0$ in \mathbb{Q} / \mathbb{Z} hence $\frac{p}{n q} \otimes m=0$, therefore any generator of $\mathbb{Q} / \mathbb{Z} \otimes \mathbb{Q} / \mathbb{Z}$ is 0 hence the module is 0 .

We claim that the product map

$$
\phi: \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \rightarrow \mathbb{Q}, \alpha \otimes \beta \mapsto \alpha \beta
$$

is an isomorphism. Indeed, similarly to the previous computation we have $\frac{p}{q} \otimes \frac{m}{n}=\frac{p}{n q} \otimes m=\frac{p m}{n q} \otimes 1$ i.e. any bilinear map $\mathbb{Q} / \mathbb{Z} \times \mathbb{Q} / \mathbb{Z} \rightarrow M$ factors through ϕ.

We have

$$
\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathbb{R}[x] /\left(x^{2}+1\right) \otimes_{\mathbb{R}} \mathbb{C} \xrightarrow{\phi} \mathbb{C}[x] /\left(x^{2}+1\right) \simeq \mathbb{C} /((x+i)(x-i)) \simeq \mathbb{C} \oplus \mathbb{C},
$$

the last isomorphism following from the Chinese remainder theorem and the map ϕ given by $[f(x)] \otimes \alpha \mapsto[\alpha f(x)]$. The latter is correctly defined and as $x^{2}+1\left|f \Leftrightarrow x^{2}+1\right| \alpha f$ and has an inverse given in \mathbb{R}-basis by

$$
[1] \mapsto[1] \otimes 1 ;[i] \mapsto[1] \otimes i ;[x] \mapsto[x] \otimes 1 ;[i x] \mapsto[x] \otimes i .
$$

Therefore ϕ is an isomorphism, hence $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathbb{C} \oplus \mathbb{C}$.
We claim that $\phi: \mathbb{Q}[x] \otimes_{\mathbb{Q}} \mathbb{C} \rightarrow \mathbb{C}[x]$ given by $f(x) \otimes \alpha \mapsto \alpha f(x)$ is an isomorphism. Indeed, the inverse is given by $\alpha x^{i} \mapsto x^{i} \otimes \alpha$.

Problem 2.1.

Given a short exact sequence $0 \rightarrow P \rightarrow Q \rightarrow S \rightarrow 0$, tensoring with $\bigoplus_{i \in I} M_{i}$ we obtain the direct sum of sequences $0 \rightarrow P \otimes M_{i} \rightarrow Q \otimes M_{i} \rightarrow S \otimes M_{i} \rightarrow 0$, whose exactness is equivalent to exactness of each of the summand, therefore the assertion follows.

Problem 2.2. Applying the previous problem to the free rank 1 modules $M_{i}=R$ we deduce that any free module is flat. Applying the problem again we deduce that any direct summand of a free module is flat, i.e. any projective module is flat.

Problem 2.3.

Consider $R=\mathbb{Z}$ and take $N=\mathbb{Q}$.
Recall that for any \mathbb{Z}-module V we can explicitely describe $V \otimes_{\mathbb{Z}} \mathbb{Q}$ as a localization, namely $V \otimes \mathbb{Q}=V_{\mathbb{Q}}:=\left\{\left.\frac{v}{r} \right\rvert\, v \in V, r \in \mathbb{Z}\right\} / \sim$, where \sim is the
equivalence relation

$$
\frac{v}{r} \sim \frac{v^{\prime}}{r^{\prime}} \Leftrightarrow \exists n \in \mathbb{Z}: n\left(r^{\prime} v-r v^{\prime}\right)=0 .
$$

Now let us firstly verify that N is flat. Given an injective map $\phi: M \hookrightarrow M^{\prime}$ of \mathbb{Z}-modules, suppose that the induced $\operatorname{map} \phi_{\mathbb{Q}}: M \otimes \mathbb{Q} \rightarrow M^{\prime} \otimes \mathbb{Q}$ is not injective. Take a non-zero element $\frac{m}{q} \in \operatorname{Ker}\left(\phi_{\mathbb{Q}}\right)$. As $\frac{m}{q}$ is nonzero, then $m \in M$ is non-torsion, otherwise if $r m=0$ then $m \otimes \frac{1}{q}=r m \otimes \frac{1}{r q}=0$. By injectivity of ϕ it follows that $\phi(m) \in M^{\prime}$ is non-torsion as well. But then $\frac{\phi(m)}{1}$ is a non-zero element of $M_{\mathbb{Q}}^{\prime}$, thus $m \otimes 1$ and hence $\frac{m}{q}$ cannot belong to the kernel of $\phi_{\mathbb{Q}}$, a contradiction.

We are left to verifying that N is not projective. Indeed, otherwise it would be a direct summand of $\mathbb{Z}^{\oplus I}$ but this module does not contain any non-trivial divisible elements.

Problem 3.

To extend α set $\alpha\left(\frac{r}{s}\right):=\alpha(s)^{-1} \alpha(r)$, it follows from the construction of the localization that this is correctly defined. Now to verify uniqueness of the extension use that $r=s \cdot \frac{r}{s} \in S^{-1} R$, therefore it should satisfy

$$
\alpha(r)=\alpha(s) \alpha\left(\frac{r}{s}\right) \in R^{\prime} .
$$

As $\alpha(s)$ is invertible in R^{\prime}, multiplying by its inverse we have

$$
\alpha\left(\frac{r}{s}\right)=\alpha(s)^{-1} \alpha(r) .
$$

Problem 4a.

Pick some elements $m_{i} \in M_{i}$. We have

$$
\frac{m_{1}+m_{2}}{s}=\frac{m_{1}}{s}+\frac{m_{2}}{s},
$$

hence $S^{-1}\left(M_{1}+M_{2}\right) \subset S^{-1} M_{1}+S^{-1} M_{2}$. Also we have

$$
\frac{m_{1}}{s_{1}}+\frac{m_{2}}{s_{2}}=\frac{s_{2} m_{1}+s_{1} m_{2}}{s_{1} s_{2}}
$$

hence $S^{-1} M_{1}+S^{-1} M_{2} \subset S^{-1}\left(M_{1}+M_{2}\right)$.

Problem 4b.

If $m \in M_{1} \cap M_{2}$ then $\frac{m}{s}$ lies in both $S^{-1} M_{1}$ and $S^{-1} M_{2}$, hence

$$
S^{-1}\left(M_{1} \cap M_{2}\right) \subset S^{-1} M_{1} \cap S^{-1} M_{2}
$$

and this inclusion holds for arbitrary intersections. Now consider

$$
v=\frac{m_{1}}{s_{1}}=\frac{m_{2}}{s_{2}} \in S^{-1} M_{1} \cap S^{-1} M_{2} .
$$

By the definition of localization there is $s \in S$ such that

$$
s\left(s_{2} m_{1}-s_{1} m_{2}\right)=s s_{2} m_{1}-s s_{1} m_{2}=0 \in M
$$

in particular $s s_{2} m_{1} \in M_{1} \cap M_{2}$ and hence $v=\frac{s s_{2} m_{1}}{s s_{2} s_{1}} \in S^{-1}\left(M_{1} \cap M_{2}\right)$ which proves the converse inclusion.

For a counterexample consider $M_{i}=(i) \subset \mathbb{Z}$ as \mathbb{Z}-modules and $S=\mathbb{Z} \backslash\{0\}$. We have $\cap_{i} M_{i}=\{0\}$, however $S^{-1} M_{i}=\mathbb{Q}=S^{-1} \mathbb{Z}$ and $\cap_{i} S^{-1} M_{i}=\mathbb{Q}$.

Problem 4c.

Pick an element $a \in \sqrt{I}$. We have $a^{n} \in I$ for some n, hence $\left(\frac{a}{s}\right)^{n}=\frac{a^{n}}{s^{n}} \in S^{-1} I$, therefore $S^{-1} \sqrt{I} \subset \sqrt{S^{-1} I}$.

Pick an element $\frac{b}{s} \in \sqrt{S^{-1} I}$. We have $\left(\frac{b}{s}\right)^{n} \in S^{-1} I$ for some n, i.e. $\frac{b^{n}}{s^{n}}=$ $\frac{a}{r} \in S^{-1} R$ for some $a \in I, r \in S$. Therefore

$$
t\left(r b^{n}-s^{n} a\right)=0 \in R
$$

for some $t \in S$, in particular $\operatorname{tr} b^{n} \in I$ and $\frac{b}{s}=\frac{t r b}{t r s} \in S^{-1} \sqrt{I}$ as $(t r b)^{n}=$ $(t r)^{n-1} t r b^{n} \in I$. This proves the converse inclusion.

Problem 5a.

Suppose $I \subset J$, i.e. there is an injective $\operatorname{map} I \hookrightarrow J \subset R$ of R-modules. As localization is exact, the map $I_{P} \rightarrow J_{P}$ is injective as well.

Now suppose for any maximal ideal $P \subset R$ the ideal I_{P} is contained in J_{P}. We need to verify that $I \subset J$ i.e. that the composite $I \hookrightarrow R \rightarrow R / J$ vanishes. Consider the following diagram:

where the lower map is 0 being the composite of

$$
\prod I_{P} \rightarrow \prod R_{P} \rightarrow R_{P} / J_{P}=\prod(R / J)_{P}
$$

The last equality is the natural identification following from exactness of localization.

Now we use that for any module M the natural map $M \rightarrow \prod_{P} M_{P}$ is injective. In particular so is the right vertical arrow of the diagram 0.1 implying that the upper horizontal arrow is 0 .

Problem 5b.

Applying Problem 4c to the zero ideal we obtain that $\operatorname{Nil}(R)_{P}=\operatorname{Nil}\left(R_{P}\right)$.
Now apply the previous problem to the nilradical of R.

Problem 5c.

Consider the ring $\mathbb{Q} \times \mathbb{Q}$. It is not an integral domain as $(0,1) \cdot(1,0)=0$, but the localizations at maximal ideals $(\mathbb{Q}, 0)$ and $(0, \mathbb{Q})$ are integral domains being \mathbb{Q}. Geometrically localization detects local properties at the point and does not know about connected components which do not contain this point.

