Problem 1.

We need to show that $M / I M=0$. Viewed as R-module it is annihilated by I and thus naturally aquires a structure of a R / I-module. To show that it is a zero module let us show that $(M / I M)_{\mathfrak{m}}=0$ for all maximal ideals of $\mathfrak{m} \unlhd R / I$. The maximal ideals of R / I are in one-to-one correspondence with maximal ideals of R containing I. Pick a maximal ideal $\mathfrak{m} \unlhd R / I$ and let $\tilde{\mathfrak{m}} \unlhd R$ be the preimage of \mathfrak{m} w.r.t. reduction map $R \rightarrow R / I$. Note that for any R / I-module N viewed as an R-module via $R \rightarrow R / I$ we have

$$
N_{\tilde{\mathfrak{m}}} \simeq N_{\mathfrak{m}} .
$$

Hence

$$
(M / I M)_{\mathfrak{m}} \simeq(M / I M)_{\tilde{\mathfrak{m}}} \simeq M_{\tilde{\mathfrak{m}}} /(I M)_{\tilde{\mathfrak{m}}}=0
$$

as R-modules, the last isomorphism following from exactness of localizations.

Problem 2a.

The element is not integral over \mathbb{Z}.
Consider the chain

$$
\mathbb{Z} \subset \mathbb{Z}[\sqrt{2}] \subset \mathbb{Z}[\sqrt{2}][\sqrt{2+\sqrt{2}}]
$$

of rings. Every extension is finite being an extension of the form $R \rightarrow$ $R[x] /(p(x))$ with a monic polynomial $p(x)$. Therefore the composite is finite and hence integral. So the element $\sqrt{2+\sqrt{2}}$ is integral over \mathbb{Z}. Now if $\sqrt{2+\sqrt{2}}+\frac{1}{2} \sqrt[3]{3}$ were integral over \mathbb{Z} so would be its difference with $\sqrt{2+\sqrt{2}}$ which is equal to $\frac{1}{2} \sqrt[3]{3}$. And if the latter element were be integral, so would be its cube which is equal to $\frac{3}{8}$. But this number is not integral over \mathbb{Z}.

Problem 2b.

The extension $R \subset R^{\prime}$ is integral as R^{\prime} is generated over R by the element x which satisfies $f(x)=0$ with monic $f[t]=t^{2}-1-\left(x^{2}-1\right) \in R[t]$.

Now consider $P^{\prime}=(x-1) \unlhd R^{\prime}$. The intersection $P^{\prime} \cap R$ consists of all polynomials in $x^{2}-1$ which are divisible by $x-1$ as polynomials in x. This is the same as all polynomials of the form $\sum_{i=1}^{k} a_{i}\left(x^{2}-1\right)^{i}$. Assume $R_{P} \subset R_{P^{\prime}}^{\prime}$ is integral, consider the element $y=\frac{1}{x+1} \in R_{P^{\prime}}^{\prime}$. If this element were integral over R_{P} we would have an identity

$$
y^{n}+p_{n} y^{n-1}+\cdots+p_{0}=0
$$

in $R_{P^{\prime}}^{\prime}$, where $p_{n} \in R_{P}$. In particular the denominators of $\left\{p_{i}\right\}$ are of the form $a_{0}+\sum_{i=1}^{k} a_{i}\left(x^{2}-1\right)^{i}$ where $a_{0} \neq 0$ by considerations above. Myltiplying by
$(x+1)^{n}$ we obtain

$$
1+p_{n}(x+1)+\cdots+p_{0}(x+1)^{n}=0 .
$$

This identity may be considered in the ring $R_{R \cap P^{\prime}}^{\prime}$, where the ideal $(x+1)$ does not become the unit ideal as the multiplicative system $R \cap P^{\prime}$ does not intersect with $(x+1)$ in R^{\prime}. Reducing $\bmod (x+1)$ we obtain a contradiction.

Problem 3.

Consider a morphism $\phi: R \rightarrow \mathbb{R}[z]$ defined by $x \mapsto z^{2}+1, y \mapsto z\left(z^{2}+1\right)$. It naturally induces a morphism,

$$
\tilde{\phi}: R\left[x^{-1}\right] \rightarrow \mathbb{R}[z]\left[\left(z^{2}+1\right)^{-1}\right]
$$

and

$$
z=\frac{\tilde{\phi}(y)}{\tilde{\phi}(x)},
$$

hence $\tilde{\phi}$ is surjective. But $\tilde{\phi}$ has an inverse given by $z \rightarrow \frac{y}{x}$, hence $\tilde{\phi}$ is an isomorphism. In particular ϕ induces an isomorphism of quotient fields so let us identify them via this morphism.

Under the identification z maps to $\frac{y}{x}=t$ so $\mathbb{R}[z]$ maps isomorphically to $R[t]$ as the latter algebra is generated by t over R. In particular $R[t] \simeq \mathbb{R}[t]$ and is a normal ring. Hence $R[t]$ is the normalization of R in K as t is integral over R.

Geometrically the embedding $R \hookrightarrow R[t]$ corresponds to the map

$$
\phi^{*}: \mathbb{A}^{1} \rightarrow V\left(y^{2}-x^{2}-x^{3}\right)
$$

given in coordinates as $z \mapsto\left(z^{2}+1, z\left(z^{2}+1\right)\right)$.

