Problem 1.

By Chinese remainder theorem we have $\mathbb{C}[x, y] /(y(y-1)) \simeq \mathbb{C}[x] \oplus \mathbb{C}[x]$ via $[f(x, y)] \mapsto(f(x, 0), f(x, 1))$. Thus

$$
R^{\prime}=\mathbb{C}[x, y] /(y(y-1), x y) \simeq(\mathbb{C}[x] \oplus \mathbb{C}[x]) /((0, x)) \simeq \mathbb{C}[x] \oplus \mathbb{C}
$$

via the map $[f(x, y)] \mapsto(f(x, 0), f(0,1))$, so the morphism $\mathbb{C}[x]=R \rightarrow R^{\prime}$ is given by $g(x) \mapsto(g(x), g(0))$ and R^{\prime} is generated over R by $(1,0)$ and $(0,1)$ which both satisfy the monic equation $t^{2}-t=0$.

So $R \rightarrow R^{\prime}$ is an integral extension. Now consider the ideal $Q^{\prime} \unlhd R^{\prime}$ generated by $(1,0) \in R^{\prime}$, which is the element corresponding to $1-y$ in the presentation $\mathbb{C}[x, y] /(y(y-1), x y)$. In other words $Q^{\prime}=\{(f(x), 0)\} \unlhd R^{\prime}$. We have

$$
Q:=Q^{\prime} \cap R=\{g(x) \mid g(0)=0\}=(x) \unlhd R .
$$

Now consider the ideal $P:=(0) \unlhd R$ which is prime and contained in Q. We claim that in the following diagram

There is no prime ideal of R^{\prime} contained in Q^{\prime} which lies over P.
Indeed, let $I=\{(h(x), 0)\} \subset Q^{\prime}$ be an ideal lying over (0). We have

$$
I \cap R=\{h(x) \mid h(0)=0\} .
$$

So if $0 \neq I \ni(h(x), 0)$ then $x h(x) \in I \cap R$ thus the only ideal contained in Q^{\prime} lying over (0) is the ideal (0) which is not prime in R^{\prime}.

So the extension $R \hookrightarrow R^{\prime}$ does not satisfy going down property, but we should not panic as R^{\prime} is not an integral domain.

Problem 2.

R^{\prime} is an integral domain therefore R is. Moreover R^{\prime} is generated over R by the element x which is integral over R as it satisfies $f(x)=0$ for $f=t^{2}-t+x(x-1)$.

Let us find $\mathfrak{q}:=(1-x, y) \cap R$: any element of R is a linear combination of $(x(1-x))^{i} y^{j}(x y)^{k}$. The element $(x(1-x))^{i} y^{j}(x y)^{k}$ lies in $(1-x, y)$ unless $i=$ $j=k=0$ so $(1-x, y) \cap R$ is the set of linear combinations of $(x(1-x))^{i} y^{j}(x y)^{k}$ with one of i, j, k greater than 0 . I.e. $\mathfrak{q}=(x(1-x), y, x y)$.

Let us find $\mathfrak{p}:=(x) \cap R$: a linear combination of $\left\{(x(1-x))^{i} y^{j}(x y)^{k}\right\}$ lies in (x) unless there is a nonzero term with $i=k=0$ so $(x) \cap R$ is the set of linear combinations of $(x(1-x))^{i} y^{j}(x y)^{k}$ with one of i, k greater than 0 . I.e. $\mathfrak{p}=(x(1-x), x y)$.

It follows from the descriptions above that $\mathfrak{p} \varsubsetneqq \mathfrak{q}$.

Let us show that there is no prime ideal $P \subset(1-x, y)$ contracting to \mathfrak{p}. Indeed, otherwise such P should contain $x(x-1)$ and $x y$. Consider

$$
\phi: R \rightarrow R /(x(x-1), x y) \simeq \mathbb{C}[y] \oplus \mathbb{C} ; f(x, y) \mapsto(f(0, y), f(1,0))
$$

which is essentially the map from Problem 1 with x and y intertwined.
Primes of R containing $(x(x-1), x y)$ correspond bijectively via ϕ^{-1} to primes of $\mathbb{C}[y] \oplus \mathbb{C}$. Primes of $\mathbb{C}[y] \oplus \mathbb{C}$ are of the form $((1,0))$ or $Q \oplus \mathbb{C}$ where $Q \unlhd \mathbb{C}[y]$ is a prime.

Observe that $\phi^{-1}((1,0))=\{f \in R \mid f(1,0)=0\}=(1-x, y)$ which contracts to \mathfrak{q}.

On the other hand, $\phi^{-1}(Q \oplus \mathbb{C})=\{f \in R \mid f(0, y) \in Q\} \ni x$. But x does not belong to the ideal $(1-x, y)$, contradiction.

Hence the extension $R \hookrightarrow R^{\prime}$ is an integral extension of integral domains but it does not satisfy going down property. However, we should not panic as R is not normal.

Problem 3.

Lemma 0.1. Given $l \in \mathbb{N}$ and a finite number of pairwise different collections $\left(k_{1 i}, \cdots, k_{l, i}\right), i=1, \cdots, N$ There is a collection $b_{1}, \cdots b_{l} \in \mathbb{N}$ of positive natural numbers such that all the sums

$$
\sum_{j=1}^{l} b_{j} k_{j i}, i=1 \cdots N
$$

are pairwise different.
Proof. The equation $\sum_{j=1}^{l} b_{j}\left(k_{j i}-k_{j r}\right)=0$ defines a hyperplane in \mathbb{R}^{l} and the complement to the union of these hyperplanes for $i \neq r$ is open and dense in \mathbb{R}^{l}. As $\left(\mathbb{Q}_{>0}\right)^{l}$ is dense in $\left(\mathbb{R}_{>0}\right)^{l}$ which is open in \mathbb{R}^{l}, the intersection of $\left(\mathbb{Q}_{>0}\right)^{l}$ with the complement to the union of these hyperplanes is non-empty. In other words there is a collection $b_{1}, \cdots b_{l} \in \mathbb{Q}$ of positive rational numbers, such that all the sums

$$
\sum_{j=1}^{l} b_{j} k_{j i}, i=1 \cdots N
$$

are pairwise different. Multiplying by the common denominator yields the desired collection of positive natural numbers.

For a more elementary proof one could use induction on l.

Lemma 0.2. Given $l \in \mathbb{N}$, a finite number of pairwise different collections $\left(k_{1 i}, \cdots, k_{l, i}\right), i=1, \cdots, N$ and a collection $d_{1}, \cdots d_{N} \in \mathbb{N}$ There is a collection $c_{1}, \cdots c_{l} \in \mathbb{N}$ of positive natural numbers such that all the sums

$$
\sum_{j=1}^{l} c_{j} k_{j i}+d_{i} ; i=1, \cdots, N
$$

are pairwise different.
Proof. Take the collection $b_{1}, \cdots b_{l} \in \mathbb{N}$ of positive natural numbers such that all the sums

$$
\sum_{j=1}^{l} b_{j} k_{j i}, i=1, \cdots, N
$$

are pairwise different provided by Lemma 0.1 and multiply them by $\max \left\{d_{1}, \cdots d_{N}\right\}+1$. We obtain a collection $c_{1}, \cdots c_{l} \in \mathbb{N}$ of positive natural numbers such that all the sums

$$
\sum_{j=1}^{l} c_{j} k_{j i}, i=1, \cdots, N
$$

are pairwise different and differ by more than $\max \left\{d_{1}, \cdots d_{N}\right\}$. Thus all the sums

$$
\sum_{j=1}^{l} c_{j} k_{j i}+d_{i}, i=1, \cdots, N
$$

are pairwise different.
Alternatively take $M:=\max \left\{k_{j, i}, d_{k}\right\}+1$ and set $c_{i}:=M^{i+1}$. Then all the sums

$$
\sum_{j=1}^{l} c_{j} k_{j i}+d_{i} ; i=1, \cdots, N
$$

are pairwise different as they have pairwise different expansions in base M.

Now write f as a sum

$$
\sum c_{k_{1, i}, \cdots, k_{n-1, i}} x_{1}^{k_{1, i}} x_{2}^{k_{2, i}} \cdots x_{n-1}^{k_{n-1, i}} p_{k_{1, i}, \cdots, k_{n-1, i}}\left(x_{n}\right)
$$

with pairwise different collections $\left(k_{1, i}, \cdots, k_{n-1, i}\right)$. Observe that

$$
\left(x_{1}+x_{n}^{a_{1}}\right)^{k_{1, i}}\left(x_{2}+x_{n}^{a_{2}}\right)^{k_{2, i}} \cdots\left(x_{n-1}+x_{n}^{a_{n-1}}\right)^{k_{n-1, i}} p_{k_{1, i}, \cdots, k_{n-1, i}}\left(x_{n}\right)
$$

4
is a polynomial monic in x_{n} of degree

$$
\sum_{j=1}^{n-1} a_{j} k_{j i}+\operatorname{deg}\left(p_{k_{1, i}, \cdots, k_{n-1, i}}\right)
$$

in x_{n} up to a scalar.
By Lemma 0.2 we can choose a_{1}, \cdots, a_{n-1} so that all the above expressions are pairwise different. Therefore, $f\left(x_{1}+x_{n}^{a_{1}}, \cdots, x_{n-1}+x_{n}^{a_{n-1}}, x_{n}\right)$ is monic in x_{n} up to a scalar and the assertion follows.

