
Problem 1.

By Chinese remainder theorem we have C[x, y]/(y(y − 1)) ≃ C[x] ⊕ C[x] via
[f(x, y)] 7→ (f(x, 0), f(x, 1)). Thus

R′ = C[x, y]/(y(y − 1), xy) ≃ (C[x]⊕ C[x])/((0, x)) ≃ C[x]⊕ C
via the map [f(x, y)] 7→ (f(x, 0), f(0, 1)), so the morphism C[x] = R → R′ is
given by g(x) 7→ (g(x), g(0)) and R′ is generated over R by (1, 0) and (0, 1)
which both satisfy the monic equation t2 − t = 0.
So R → R′ is an integral extension. Now consider the ideal Q′⊴R′ generated

by (1, 0) ∈ R′, which is the element corresponding to 1− y in the presentation
C[x, y]/(y(y − 1), xy). In other words Q′ = {(f(x), 0)}⊴R′. We have

Q := Q′ ∩R = {g(x)|g(0) = 0} = (x)⊴R.

Now consider the ideal P := (0)⊴R which is prime and contained in Q. We
claim that in the following diagram

(0.1)

R′ : ?? ⊂ Q′

R : P = (0) ⊂ Q = (x)

There is no prime ideal of R′ contained in Q′ which lies over P .
Indeed, let I = {(h(x), 0)} ⊂ Q′ be an ideal lying over (0). We have

I ∩R = {h(x)|h(0) = 0}.
So if 0 ̸= I ∋ (h(x), 0) then xh(x) ∈ I ∩ R thus the only ideal contained in

Q′ lying over (0) is the ideal (0) which is not prime in R′.
So the extension R ↪→ R′ does not satisfy going down property, but we

should not panic as R′ is not an integral domain.

Problem 2.

R′ is an integral domain therefore R is. Moreover R′ is generated over R by the
element x which is integral overR as it satisfies f(x) = 0 for f = t2−t+x(x−1).

Let us find q := (1− x, y) ∩ R: any element of R is a linear combination of
(x(1− x))iyj(xy)k. The element (x(1− x))iyj(xy)k lies in (1− x, y) unless i =
j = k = 0 so (1−x, y)∩R is the set of linear combinations of (x(1−x))iyj(xy)k

with one of i, j, k greater than 0. I.e. q = (x(1− x), y, xy).
Let us find p := (x) ∩ R: a linear combination of {(x(1 − x))iyj(xy)k} lies

in (x) unless there is a nonzero term with i = k = 0 so (x) ∩ R is the set of
linear combinations of (x(1 − x))iyj(xy)k with one of i, k greater than 0. I.e.
p = (x(1− x), xy).
It follows from the descriptions above that p ⫋ q.
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Let us show that there is no prime ideal P ⊂ (1 − x, y) contracting to p.
Indeed, otherwise such P should contain x(x− 1) and xy. Consider

ϕ : R → R/(x(x− 1), xy) ≃ C[y]⊕ C; f(x, y) 7→ (f(0, y), f(1, 0))

which is essentially the map from Problem 1 with x and y intertwined.
Primes ofR containing (x(x−1), xy) correspond bijectively via ϕ−1 to primes

of C[y]⊕C. Primes of C[y]⊕C are of the form ((1, 0)) or Q⊕C where Q⊴C[y]
is a prime.

Observe that ϕ−1((1, 0)) = {f ∈ R|f(1, 0) = 0} = (1−x, y) which contracts
to q.

On the other hand, ϕ−1(Q⊕C) = {f ∈ R|f(0, y) ∈ Q} ∋ x. But x does not
belong to the ideal (1− x, y), contradiction.

Hence the extension R ↪→ R′ is an integral extension of integral domains
but it does not satisfy going down property. However, we should not panic as
R is not normal.

Problem 3.

Lemma 0.1. Given l ∈ N and a finite number of pairwise different collec-
tions (k1i, · · · , kl,i), i = 1, · · · , N There is a collection b1, · · · bl ∈ N of positive
natural numbers such that all the sums

l∑
j=1

bjkji, i = 1 · · ·N

are pairwise different.

Proof. The equation
l∑

j=1

bj(kji − kjr) = 0 defines a hyperplane in Rl and the

complement to the union of these hyperplanes for i ̸= r is open and dense in
Rl. As (Q>0)

l is dense in (R>0)
l which is open in Rl, the intersection of (Q>0)

l

with the complement to the union of these hyperplanes is non-empty. In other
words there is a collection b1, · · · bl ∈ Q of positive rational numbers, such that
all the sums

l∑
j=1

bjkji, i = 1 · · ·N

are pairwise different. Multiplying by the common denominator yields the
desired collection of positive natural numbers.

For a more elementary proof one could use induction on l. □
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Lemma 0.2. Given l ∈ N, a finite number of pairwise different collections
(k1i, · · · , kl,i), i = 1, · · · , N and a collection d1, · · · dN ∈ N There is a collection
c1, · · · cl ∈ N of positive natural numbers such that all the sums

l∑
j=1

cjkji + di; i = 1, · · · , N

are pairwise different.

Proof. Take the collection b1, · · · bl ∈ N of positive natural numbers such that
all the sums

l∑
j=1

bjkji, i = 1, · · · , N

are pairwise different provided by Lemma 0.1 and multiply them by
max{d1, · · · dN} + 1. We obtain a collection c1, · · · cl ∈ N of positive natu-
ral numbers such that all the sums

l∑
j=1

cjkji, i = 1, · · · , N

are pairwise different and differ by more than max{d1, · · · dN}. Thus all the
sums

l∑
j=1

cjkji + di, i = 1, · · · , N

are pairwise different.
Alternatively take M := max{kj,i, dk}+ 1 and set ci := M i+1. Then all the

sums

l∑
j=1

cjkji + di; i = 1, · · · , N

are pairwise different as they have pairwise different expansions in base
M . □

Now write f as a sum∑
ck1,i,··· ,kn−1,i

x
k1,i
1 x

k2,i
2 · · ·xkn−1,i

n−1 pk1,i,··· ,kn−1,i
(xn)

with pairwise different collections (k1,i, · · · , kn−1,i). Observe that

(x1 + xa1
n )k1,i(x2 + xa2

n )k2,i · · · (xn−1 + xan−1
n )kn−1,ipk1,i,··· ,kn−1,i

(xn)
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is a polynomial monic in xn of degree
n−1∑
j=1

ajkji + deg(pk1,i,··· ,kn−1,i
)

in xn up to a scalar.
By Lemma 0.2 we can choose a1, · · · , an−1 so that all the above expressions

are pairwise different. Therefore, f(x1 + xa1
n , · · · , xn−1 + xan−1

n , xn) is monic in
xn up to a scalar and the assertion follows.


