Problem 1.

By Chinese remainder theorem we have $\mathbb{C}[x,y]/(y(y-1)) \simeq \mathbb{C}[x] \oplus \mathbb{C}[x]$ via $[f(x,y)] \mapsto (f(x,0), f(x,1))$. Thus

$$R' = \mathbb{C}[x, y] / (y(y - 1), xy) \simeq (\mathbb{C}[x] \oplus \mathbb{C}[x]) / ((0, x)) \simeq \mathbb{C}[x] \oplus \mathbb{C}$$

via the map $[f(x,y)] \mapsto (f(x,0), f(0,1))$, so the morphism $\mathbb{C}[x] = R \to R'$ is given by $g(x) \mapsto (g(x), g(0))$ and R' is generated over R by (1,0) and (0,1) which both satisfy the monic equation $t^2 - t = 0$.

So $R \to R'$ is an integral extension. Now consider the ideal $Q' \leq R'$ generated by $(1,0) \in R'$, which is the element corresponding to 1-y in the presentation $\mathbb{C}[x,y]/(y(y-1),xy)$. In other words $Q' = \{(f(x),0)\} \leq R'$. We have

$$Q \coloneqq Q' \cap R = \{g(x) | g(0) = 0\} = (x) \trianglelefteq R.$$

Now consider the ideal $P := (0) \leq R$ which is prime and contained in Q. We claim that in the following diagram

$$(0.1) \qquad \begin{array}{cccc} R': & ?? & \subset & Q' \\ & \downarrow & & \downarrow \\ R: & P = (0) & \subset & Q = (x) \end{array}$$

There is no prime ideal of R' contained in Q' which lies over P. Indeed, let $I = \{(h(x), 0)\} \subset Q'$ be an ideal lying over (0). We have

$$I \cap R = \{h(x) | h(0) = 0\}.$$

So if $0 \neq I \ni (h(x), 0)$ then $xh(x) \in I \cap R$ thus the only ideal contained in Q' lying over (0) is the ideal (0) which is not prime in R'.

So the extension $R \hookrightarrow R'$ does not satisfy going down property, but we should not panic as R' is not an integral domain.

Problem 2.

R' is an integral domain therefore R is. Moreover R' is generated over R by the element x which is integral over R as it satisfies f(x) = 0 for $f = t^2 - t + x(x-1)$.

Let us find $\mathbf{q} \coloneqq (1-x,y) \cap R$: any element of R is a linear combination of $(x(1-x))^i y^j (xy)^k$. The element $(x(1-x))^i y^j (xy)^k$ lies in (1-x,y) unless i = j = k = 0 so $(1-x,y) \cap R$ is the set of linear combinations of $(x(1-x))^i y^j (xy)^k$ with one of i, j, k greater than 0. I.e. $\mathbf{q} = (x(1-x), y, xy)$.

Let us find $\mathfrak{p} \coloneqq (x) \cap R$: a linear combination of $\{(x(1-x))^i y^j (xy)^k\}$ lies in (x) unless there is a nonzero term with i = k = 0 so $(x) \cap R$ is the set of linear combinations of $(x(1-x))^i y^j (xy)^k$ with one of i, k greater than 0. I.e. $\mathfrak{p} = (x(1-x), xy)$.

It follows from the descriptions above that $\mathfrak{p} \subsetneq \mathfrak{q}$.

Let us show that there is no prime ideal $P \subset (1 - x, y)$ contracting to \mathfrak{p} . Indeed, otherwise such P should contain x(x - 1) and xy. Consider

$$\phi \colon R \to R/(x(x-1), xy) \simeq \mathbb{C}[y] \oplus \mathbb{C}; f(x, y) \mapsto (f(0, y), f(1, 0))$$

which is essentially the map from Problem 1 with x and y intertwined.

Primes of R containing (x(x-1), xy) correspond bijectively via ϕ^{-1} to primes of $\mathbb{C}[y] \oplus \mathbb{C}$. Primes of $\mathbb{C}[y] \oplus \mathbb{C}$ are of the form ((1,0)) or $Q \oplus \mathbb{C}$ where $Q \leq \mathbb{C}[y]$ is a prime.

Observe that $\phi^{-1}((1,0)) = \{f \in R | f(1,0) = 0\} = (1-x,y)$ which contracts to **q**.

On the other hand, $\phi^{-1}(Q \oplus \mathbb{C}) = \{f \in R | f(0, y) \in Q\} \ni x$. But x does not belong to the ideal (1 - x, y), contradiction.

Hence the extension $R \hookrightarrow R'$ is an integral extension of integral domains but it does not satisfy going down property. However, we should not panic as R is not normal.

Problem 3.

Lemma 0.1. Given $l \in \mathbb{N}$ and a finite number of pairwise different collections $(k_{1i}, \dots, k_{l,i}), i = 1, \dots, N$ There is a collection $b_1, \dots, b_l \in \mathbb{N}$ of positive natural numbers such that all the sums

$$\sum_{j=1}^{l} b_j k_{ji}, i = 1 \cdots N$$

are pairwise different.

Proof. The equation $\sum_{j=1}^{l} b_j(k_{ji} - k_{jr}) = 0$ defines a hyperplane in \mathbb{R}^l and the complement to the union of these hyperplanes for $i \neq r$ is open and dense in \mathbb{R}^l . As $(\mathbb{Q}_{>0})^l$ is dense in $(\mathbb{R}_{>0})^l$ which is open in \mathbb{R}^l , the intersection of $(\mathbb{Q}_{>0})^l$ with the complement to the union of these hyperplanes is non-empty. In other words there is a collection $b_1, \dots, b_l \in \mathbb{Q}$ of positive rational numbers, such that all the sums

$$\sum_{j=1}^{l} b_j k_{ji}, i = 1 \cdots N$$

are pairwise different. Multiplying by the common denominator yields the desired collection of positive natural numbers.

For a more elementary proof one could use induction on l.

$$\sum_{j=1}^{l} c_j k_{ji} + d_i; i = 1, \cdots, N$$

are pairwise different.

Proof. Take the collection $b_1, \dots, b_l \in \mathbb{N}$ of positive natural numbers such that all the sums

$$\sum_{j=1}^{l} b_j k_{ji}, i = 1, \cdots, N$$

are pairwise different provided by Lemma 0.1 and multiply them by $\max\{d_1, \dots, d_N\} + 1$. We obtain a collection $c_1, \dots, c_l \in \mathbb{N}$ of positive natural numbers such that all the sums

$$\sum_{j=1}^{l} c_j k_{ji}, i = 1, \cdots, N$$

are pairwise different and differ by more than $\max\{d_1, \cdots, d_N\}$. Thus all the sums

$$\sum_{j=1}^{l} c_j k_{ji} + d_i, i = 1, \cdots, N$$

are pairwise different.

Alternatively take $M \coloneqq \max\{k_{j,i}, d_k\} + 1$ and set $c_i \coloneqq M^{i+1}$. Then all the sums

$$\sum_{j=1}^{l} c_j k_{ji} + d_i; i = 1, \cdots, N$$

are pairwise different as they have pairwise different expansions in base M.

Now write f as a sum

$$\sum c_{k_{1,i},\cdots,k_{n-1,i}} x_1^{k_{1,i}} x_2^{k_{2,i}} \cdots x_{n-1}^{k_{n-1,i}} p_{k_{1,i},\cdots,k_{n-1,i}}(x_n)$$

with pairwise different collections $(k_{1,i}, \cdots, k_{n-1,i})$. Observe that

$$(x_1 + x_n^{a_1})^{k_{1,i}} (x_2 + x_n^{a_2})^{k_{2,i}} \cdots (x_{n-1} + x_n^{a_{n-1}})^{k_{n-1,i}} p_{k_{1,i},\cdots,k_{n-1,i}} (x_n)$$

is a polynomial monic in x_n of degree

$$\sum_{j=1}^{n-1} a_j k_{ji} + \deg(p_{k_{1,i},\cdots,k_{n-1,i}})$$

in x_n up to a scalar.

By Lemma 0.2 we can choose a_1, \dots, a_{n-1} so that all the above expressions are pairwise different. Therefore, $f(x_1 + x_n^{a_1}, \dots, x_{n-1} + x_n^{a_{n-1}}, x_n)$ is monic in x_n up to a scalar and the assertion follows.