Problem 2a.

As in the proof of Krull Principle Ideal Theorem we can take quotient by P_{0} and localize at P_{n} and assume that R is a local integral domain with the maximal ideal P_{n}. We will prove the assertion by induction on n starting with $n=2$. Base: given $0 \subsetneq P_{1} \subsetneq P_{2}$ and $a \in P_{2}$, in particular $\operatorname{codim}\left(P_{2}\right) \geq 2$. If $a=0$ we can set $P_{1}^{\prime}:=P_{1}$. Otherwise consider P_{1} to be the minimal prime lying over a. We have $P_{1}^{\prime} \neq(0)$ and by Krull Principle Ideal Theorem $\operatorname{codim}\left(P_{1}^{\prime}\right) \leq 1$ so

$$
0 \subsetneq P_{1}^{\prime} \subsetneq P_{2} .
$$

Step: let $n>2$ and suppose the assertion is true for $n-1$. Consider the chain $P_{n-2} \subsetneq P_{n-1} \subseteq P_{n}$. By the induction step there is a prime P_{n-1}^{\prime} such that $P_{n-2} \subsetneq P_{n-1}^{\prime} \subsetneq P_{n}$ and $a \in P_{n-1}^{\prime}$. Now apply the inductive assumption to the chain $P_{0} \subsetneq \cdots \subsetneq P_{n-1}^{\prime}$.

Problem 2b.

Take any chain in an integral Noetherian R starting with $P_{0}=(0)$ and choose a nonzero $a \in P_{n}$. Then of course $a \notin P_{0}$. For a concrete example consider $0 \subsetneq P_{1}=(2) \unlhd \mathbb{Z}$ and $a=2 \in(2)$.

Problem 1.

See Gathmann, Corollary 11.17.

Problem 3a.

Let $\mathfrak{m} \unlhd \mathbb{Z}[x]$ be a maximal ideal.
Lemma 1. $\mathfrak{m} \cap \mathbb{Z}=(p)$ for some prime $p \in \mathbb{Z}$
Proof. Indeed, $\mathfrak{m} \cap \mathbb{Z}$ is a prime ideal of \mathbb{Z} so it is either (p) or (0). So suppose it is (0). Then the ideal $\mathfrak{m} \mathbb{Q}[x] \unlhd \mathbb{Q}[x]$ is proper and hence is generated by a polynomial $f(x)$ of positive degree. Without loss of generality we may assume $f \in \mathbb{Z}[x]$ and the greatest common divisor of all coefficients of f is 1 .

We claim that $f \in \mathfrak{m}$. Indeed, $f \cdot n \in \mathfrak{m}$ for some non-zero integer n. But \mathfrak{m} is prime and does not contain any non-zero integers by assumption, it follows that $f \in \mathfrak{m}$.

Next we claim that $\mathfrak{m}=(f)$. Indeed, take any $g \in \mathfrak{m}$. We know that $f \mid g$ in $\mathbb{Q}[x]$ so we can write $g=h f$ for $h \in \mathbb{Q}[x]$. But as the greatest common divisor of all coefficients of f is 1 it follows from Gauss' Lemma that $h \in \mathbb{Z}[x]$ and hence $\mathfrak{m}=(f)$.

But then we claim that $\mathbb{Z}[x] /(f)$ cannot be a field. Indeed, as $(f) \cap \mathbb{Z}=(0)$ the composite $\mathbb{Z} \rightarrow \mathbb{Z}[x] \rightarrow \mathbb{Z}[x] /(f)$ is injective. Now pick a large enough integer A such that $f(A) \notin\{0, \pm 1\}$. Then $f(A)$ has no inverse in $\mathbb{Z}[x] /(f)$ since otherwise there would exist $h(x) \in \mathbb{Z}[x]$ such that $f(x) \mid f(A) \cdot h(x)-1$. But substituting $x=A$ yields $f(A) \mid f(A) \cdot h(A)-1$ which is a contradiction.

So $\mathfrak{m} \cap \mathbb{Z}=(p)$ by Lemma. Thus the morphism $\mathbb{Z}[x] \rightarrow \mathbb{Z}[x] / \mathfrak{m}$ factors through $\mathbb{Z}[x] \rightarrow \mathbb{Z}[x] /(p)=\mathbb{F}_{p}[x]$ and \mathfrak{m} is a preimage of a maximal ideal \mathfrak{p} of $\mathbb{F}_{p}[x]$.

We have $\mathfrak{p}=(g)$ for an irreducible $g \in \mathbb{F}_{p}[x]$, hence $\mathfrak{m}=(p, \tilde{g})$ where $\tilde{g} \in \mathbb{Z}[x]$ is a lift of g.
Problem 3b.
Let $(0)=P_{0} \subsetneq \cdots \subsetneq P_{n-1} \subsetneq P_{n}=\mathfrak{m}=(p, f)$ be a maximal chain of primes in $\mathbb{Z}[x]$, where \mathfrak{m} is a maximal ideal written in the form provided by Problem 3a. As $p \in \mathfrak{m}$ by Problem 2a we may assume that $p \in P_{1}$. Then $P_{1} \subsetneq P_{2} \ldots \subsetneq P_{n}$ is the preimage of a chain of prime ideals $Q_{1} \subsetneq Q_{2} \cdots \subsetneq P_{n}$ in $\mathbb{F}_{p}[x]$ which should have length ≤ 1, hence $n \leq 2$. We proved that $\operatorname{dim}(\mathbb{Z}[x]) \leq 2$. For an example of length 2 chain consider $0 \subsetneq(p) \subsetneq(p, x)$.

Problem 4a.

Set $k=\operatorname{dim}(X)$ and $l=\operatorname{dim}(Y)$. It follows that there are finite injective homomorphisms

$$
\phi_{1}: K\left[x_{1}, \cdots, x_{k}\right] \hookrightarrow K[X] ; \phi_{2}: K\left[y_{1}, \cdots, y_{l}\right] \hookrightarrow K[Y] .
$$

Thus
$\phi_{1} \otimes \phi_{2}: K\left[z_{1} \cdots z_{k+l}\right] \simeq K\left[x_{1}, \cdots, x_{k}\right] \otimes K\left[y_{1}, \cdots, y_{l}\right] \hookrightarrow K[X] \otimes K[Y]=K[X \times Y]$
is a finite injective homomorphism implying that $\operatorname{dim}(X \times Y)=k+l$.

Problem 4b.

Here we need to assume that every irreducible component of X and of Y has dimension $\operatorname{dim}(X)$ and $\operatorname{dim}(Y)$ respectively.

Suppose first that $Y=V\left(x_{1}\right) \simeq \mathbb{A}^{n-1}$, a coordinate hyperplane. We need to show that dimensions of irreducible components of $X \cap Y$ are at least $\operatorname{dim}(X)-$ 1. We have $K[X] \simeq K\left[x_{1}, \cdots, x_{n}\right] / I_{X}$ and the irreducible components of $X \cap Y$ correspond to minimal primes of $K\left[x_{1}, \cdots, x_{n}\right] /\left(I_{X}, x_{1}\right)$, i.e. to minimal primes of $K[X]$ containing the image of x_{1}. By Krull Principle Ideal Theorem all these primes are of height at most 1, i.e. the corresponding subvarieties of $K[X]$ have dimension $\geq \operatorname{dim}(X)-1$.

Now suppose $Y=V\left(x_{1}, \cdots, x_{k}\right)=V\left(x_{1}\right) \cap V\left(x_{2}\right) \cap \cdots \cap V\left(x_{k}\right) \simeq \mathbb{A}^{n-k}$. We have $X \cap Y=\left(X \cap\left(V\left(x_{1}\right) \cap \cdots \cap V\left(x_{k-1}\right)\right)\right) \cap V\left(x_{k}\right)$ and it is easy to see by induction using the case $k=1$ as the base that every irreducible component of this intersection has dimension at least $\operatorname{dim}(X)-k$.

Now take general X, Y. We have an embedding $X \times Y \hookrightarrow \mathbb{A}^{2 n}=\mathbb{A}^{n} \times \mathbb{A}^{n}$ and $X \cap Y \simeq(X \times Y) \cap \Delta_{\mathbb{A}^{2 n}}$, where $\Delta_{\mathbb{A}^{2 n}}$ is the diagonal subvariety of $\mathbb{A}^{n} \times \mathbb{A}^{n}$ which is defined by the ideal $\left(x_{1}-y_{1}, \cdots, x_{n}-y_{n}\right)$. As a corollary from Problem 4a every irreducible component of $X \times Y$ has dimension $\operatorname{dim}(X)+\operatorname{dim}(Y)$. Moreover, $\Delta_{\mathbb{A}^{2 n}}$ is an n-dimensional intersection of n hyperplanes in $\mathbb{A}^{2 n}$ and thus we reduce to the previous case and conclude that any irreducible
component of $X \cap Y$ has dimension at least $\operatorname{dim}(X)+\operatorname{dim}(Y)+n-2 n=$ $\operatorname{dim}(X)+\operatorname{dim}(Y)-n$.

