
Problem 2a.

As in the proof of Krull Principle Ideal Theorem we can take quotient by
P0 and localize at Pn and assume that R is a local integral domain with the
maximal ideal Pn. We will prove the assertion by induction on n starting with
n = 2. Base: given 0 ⊊ P1 ⊊ P2 and a ∈ P2, in particular codim(P2) ≥ 2.
If a = 0 we can set P ′

1 := P1. Otherwise consider P1 to be the minimal
prime lying over a. We have P ′

1 ̸= (0) and by Krull Principle Ideal Theorem
codim(P ′

1) ≤ 1 so

0 ⊊ P ′
1 ⊊ P2.

Step: let n > 2 and suppose the assertion is true for n− 1. Consider the chain
Pn−2 ⊊ Pn−1 ⊆ Pn. By the induction step there is a prime P ′

n−1 such that
Pn−2 ⊊ P ′

n−1 ⊊ Pn and a ∈ P ′
n−1. Now apply the inductive assumption to the

chain P0 ⊊ · · · ⊊ P ′
n−1.

Problem 2b.

Take any chain in an integral Noetherian R starting with P0 = (0) and choose
a nonzero a ∈ Pn. Then of course a /∈ P0. For a concrete example consider
0 ⊊ P1 = (2)⊴ Z and a = 2 ∈ (2).

Problem 1.

See Gathmann, Corollary 11.17.

Problem 3a.

Let m⊴ Z[x] be a maximal ideal.

Lemma 1. m ∩ Z = (p) for some prime p ∈ Z

Proof. Indeed, m∩Z is a prime ideal of Z so it is either (p) or (0). So suppose
it is (0). Then the ideal mQ[x] ⊴ Q[x] is proper and hence is generated by a
polynomial f(x) of positive degree. Without loss of generality we may assume
f ∈ Z[x] and the greatest common divisor of all coefficients of f is 1.
We claim that f ∈ m. Indeed, f ·n ∈ m for some non-zero integer n. But m

is prime and does not contain any non-zero integers by assumption, it follows
that f ∈ m.

Next we claim that m = (f). Indeed, take any g ∈ m. We know that f |g
in Q[x] so we can write g = hf for h ∈ Q[x]. But as the greatest common
divisor of all coefficients of f is 1 it follows from Gauss’ Lemma that h ∈ Z[x]
and hence m = (f).

But then we claim that Z[x]/(f) cannot be a field. Indeed, as (f)∩Z = (0)
the composite Z → Z[x] → Z[x]/(f) is injective. Now pick a large enough
integer A such that f(A) /∈ {0,±1}. Then f(A) has no inverse in Z[x]/(f)
since otherwise there would exist h(x) ∈ Z[x] such that f(x)|f(A) · h(x) − 1.
But substituting x = A yields f(A)|f(A)·h(A)−1 which is a contradiction. □
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So m ∩ Z = (p) by Lemma. Thus the morphism Z[x] → Z[x]/m factors
through Z[x] → Z[x]/(p) = Fp[x] and m is a preimage of a maximal ideal p of
Fp[x].
We have p = (g) for an irreducible g ∈ Fp[x], hence m = (p, g̃) where

g̃ ∈ Z[x] is a lift of g.

Problem 3b.

Let (0) = P0 ⊊ · · · ⊊ Pn−1 ⊊ Pn = m = (p, f) be a maximal chain of primes in
Z[x], where m is a maximal ideal written in the form provided by Problem 3a.
As p ∈ m by Problem 2a we may assume that p ∈ P1. Then P1 ⊊ P2 · · · ⊊ Pn

is the preimage of a chain of prime ideals Q1 ⊊ Q2 · · · ⊊ Pn in Fp[x] which
should have length ≤ 1, hence n ≤ 2. We proved that dim(Z[x]) ≤ 2. For an
example of length 2 chain consider 0 ⊊ (p) ⊊ (p, x).

Problem 4a.

Set k = dim(X) and l = dim(Y ). It follows that there are finite injective
homomorphisms

ϕ1 : K[x1, · · · , xk] ↪→ K[X]; ϕ2 : K[y1, · · · , yl] ↪→ K[Y ].

Thus

ϕ1⊗ϕ2 : K[z1 · · · zk+l] ≃ K[x1, · · · , xk]⊗K[y1, · · · , yl] ↪→ K[X]⊗K[Y ] = K[X×Y ]

is a finite injective homomorphism implying that dim(X × Y ) = k + l.

Problem 4b.

Here we need to assume that every irreducible component of X and of Y has
dimension dim(X) and dim(Y ) respectively.

Suppose first that Y = V (x1) ≃ An−1, a coordinate hyperplane. We need to
show that dimensions of irreducible components ofX∩Y are at least dim(X)−
1. We haveK[X] ≃ K[x1, · · · , xn]/IX and the irreducible components ofX∩Y
correspond to minimal primes ofK[x1, · · · , xn]/(IX , x1), i.e. to minimal primes
ofK[X] containing the image of x1. By Krull Principle Ideal Theorem all these
primes are of height at most 1, i.e. the corresponding subvarieties of K[X]
have dimension ≥ dim(X)− 1.

Now suppose Y = V (x1, · · · , xk) = V (x1)∩V (x2)∩· · ·∩V (xk) ≃ An−k. We
have X ∩ Y = (X ∩ (V (x1) ∩ · · · ∩ V (xk−1))) ∩ V (xk) and it is easy to see by
induction using the case k = 1 as the base that every irreducible component
of this intersection has dimension at least dim(X)− k.
Now take general X, Y . We have an embedding X × Y ↪→ A2n = An × An

and X∩Y ≃ (X×Y )∩∆A2n , where ∆A2n is the diagonal subvariety of An×An

which is defined by the ideal (x1−y1, · · · , xn−yn). As a corollary from Problem
4a every irreducible component of X × Y has dimension dim(X) + dim(Y ).
Moreover, ∆A2n is an n−dimensional intersection of n hyperplanes in A2n

and thus we reduce to the previous case and conclude that any irreducible
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component of X ∩ Y has dimension at least dim(X) + dim(Y ) + n − 2n =
dim(X) + dim(Y )− n.


