Problem 1.

Denote $f=y^{2}-x^{3}-x^{2}$. We have

$$
\frac{\partial f}{\partial x}=-3 x^{2}-2 x, \frac{\partial f}{\partial y}=2 y
$$

Let $\mathfrak{n} \unlhd \mathbb{C}[x, y] /(f)$ be a maximal ideal. Then

$$
V(\mathfrak{n})=(a, b) \in \mathbb{C}^{2}
$$

for some $(a, b):=p \in \mathbb{C}^{2}$ and by Graham Construction 11.34 the tangent space at p is given by

$$
T_{p} V(f)=V\left(\left(-3 a^{2}-2 a\right) z+2 b t\right) \subset \mathbb{A}_{z, t}^{2} .
$$

It is of dimension 1 , unless $-3 a^{2}-2 a=2 b=0$. As (a, b) moreover satisfy $f(a, b)=0$ we can see that the latter holds iff $(a, b)=(0,0)$, i.e. $\mathfrak{n}=\mathfrak{m}$ and in this case $T_{p} V(f)$ is 2-dimensional. As tangent space is dual to cotangent their dimensions coincide.

As $\mathbb{C}[x, y]$ is an integral domain, so in particular f is not a zero divisor, any minimal prime over f has height 1 , so $\operatorname{dim} V(f)=2-1=1$. (Actually the only minimal prime over f is (f) as f is an irreducible element in the UFD $\mathbb{C}[x, y]$.

Recall the following theorem proven on the lectures:
Theorem 1. Assume an R-module M has a decomposition series. Then all decomposition series have the same length and any finite chain in M can be extended to a decomposition series.

Problem 2.

Assume M is of finite length. Suppose there is an infinite strictly ascending or strictly descending chain of submodules of M. Take a piece of length $l(M)+1$ and extend it to a decomposition series. The obtained decomposition series has length strictly bigger than $l(M)$, so we obtain a contradiction.

Assume M is nonzero Artinian and Noetherian. By the descending chain condition there is a minimal nonzero submodule M_{0} of M. If $M_{0} \neq M$ similarly there is a minimal submodule M_{1} of M properly containing M_{0} and so on. Constructing on each step a minimal submodule containing properly previous ones leads to an increasing chain of submodules of M which should be finite by our hypothesis on M. Thus we obtain

$$
0 \subsetneq M_{0} \subsetneq \cdots \subsetneq M_{l-1} \subsetneq M_{l}=M
$$

By minimality conditions M_{i+1} / M_{i} are simple, so it is a decomposition series.
Problem 3.

We will prove the assertion by induction on $l=l(M)$. The base will be $l=1,2$. If $l=1$ the statement is clear. Let $l=2$ and suppose there are two different decomposition series $0 \subsetneq N \subsetneq M$ and $0 \subsetneq N^{\prime} \subsetneq M$. Note that we have $N+N^{\prime}=M$ as $N+N^{\prime}$ is a submodule of M properly containing N.

Lemma 1. $\phi: N \oplus N^{\prime} \rightarrow N+N^{\prime}=M$ is an isomorphism.
Proof. Indeed, ϕ is surjective and its kernel is $N \cap N^{\prime}=0$.
Now as $\left.\phi\right|_{(N, 0)}: N \hookrightarrow M$ is the embedding arising from the first decomposition series we have

$$
M / N \simeq\left(N \oplus N^{\prime}\right) /(N, 0) \simeq N^{\prime}
$$

and similarly

$$
M / N^{\prime} \simeq\left(N \oplus N^{\prime}\right) /\left(0, N^{\prime}\right) \simeq N
$$

So the case $l=2$ is proven.
Let $l \geq 3$ and assume the statement is true for $l-1$. Take two decomposition series

$$
0 \subsetneq M_{0} \subsetneq \cdots \subsetneq M_{l}=M
$$

and

$$
0 \subsetneq M_{0}^{\prime} \subsetneq \cdots \subsetneq M_{l}^{\prime}=M .
$$

If $M_{0}=M_{0}^{\prime}$ it follows that first successive quotients coincide and $0 \subsetneq$ $M_{1} / M_{0} \cdots \subset M_{l} / M_{0}$ as well as $0 \subsetneq M_{1}^{\prime} / M_{0} \cdots \subset M_{l}^{\prime} / M_{0}$ are decomposition series for a length $l-1$ module M / M_{0} so we conclude by inductive assumption.

If $M_{0} \neq M_{0}^{\prime}$ consider the chain $0 \subsetneq M_{0} \subsetneq M_{0}+M_{0}^{\prime}$. It extends to a decomposition series of the form

$$
0 \subsetneq M_{0} \subsetneq M_{0}+M_{0}^{\prime} \subsetneq \cdots \subsetneq M_{l}^{\prime \prime}=M
$$

Consider the extending of the chain $0 \subsetneq M_{0}^{\prime} \subsetneq M_{0}+M_{0}^{\prime}$ to the decomposition series

$$
0 \subsetneq M_{0}^{\prime} \subsetneq M_{0}+M_{0}^{\prime} \subsetneq \cdots \subsetneq M_{l}^{\prime \prime}=M
$$

with the same higher terms as in the previous one starting with $M_{0}+M_{0}^{\prime}$.
Now observe that the first and the third decomposition series have the common first term, hence the same successive quotients by induction hypothesis. Similarly the second and the fourth decomposition series have the same successive quotients. Also the third and the fourth decomposition series have the same successive quotients by the case $l=2$ and as they have the same terms starting with $M_{0}+M_{0}^{\prime}$. Therefore the first and the second decomposition series have the same successive quotients.

