
Problem 1.

Denote f = y2 − x3 − x2. We have

∂f

∂x
= −3x2 − 2x,

∂f

∂y
= 2y.

Let n⊴ C[x, y]/(f) be a maximal ideal. Then

V (n) = (a, b) ∈ C2

for some (a, b) := p ∈ C2 and by Graham Construction 11.34 the tangent space
at p is given by

TpV (f) = V ((−3a2 − 2a)z + 2bt) ⊂ A2
z,t.

It is of dimension 1, unless −3a2 − 2a = 2b = 0. As (a, b) moreover satisfy
f(a, b) = 0 we can see that the latter holds iff (a, b) = (0, 0), i.e. n = m and in
this case TpV (f) is 2-dimensional. As tangent space is dual to cotangent their
dimensions coincide.

As C[x, y] is an integral domain, so in particular f is not a zero divisor, any
minimal prime over f has height 1, so dimV (f) = 2 − 1 = 1. (Actually the
only minimal prime over f is (f) as f is an irreducible element in the UFD
C[x, y].)

Recall the following theorem proven on the lectures:

Theorem 1. Assume an R-module M has a decomposition series. Then all
decomposition series have the same length and any finite chain in M can be
extended to a decomposition series.

Problem 2.

Assume M is of finite length. Suppose there is an infinite strictly ascending or
strictly descending chain of submodules of M . Take a piece of length l(M)+1
and extend it to a decomposition series. The obtained decomposition series
has length strictly bigger than l(M), so we obtain a contradiction.
Assume M is nonzero Artinian and Noetherian. By the descending chain

condition there is a minimal nonzero submoduleM0 ofM . IfM0 ̸= M similarly
there is a minimal submodule M1 of M properly containing M0 and so on.
Constructing on each step a minimal submodule containing properly previous
ones leads to an increasing chain of submodules of M which should be finite
by our hypothesis on M . Thus we obtain

0 ⊊ M0 ⊊ · · · ⊊ Ml−1 ⊊ Ml = M.

By minimality conditions Mi+1/Mi are simple, so it is a decomposition series.

Problem 3.
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We will prove the assertion by induction on l = l(M). The base will be l = 1, 2.
If l = 1 the statement is clear. Let l = 2 and suppose there are two different
decomposition series 0 ⊊ N ⊊ M and 0 ⊊ N ′ ⊊ M . Note that we have
N +N ′ = M as N +N ′ is a submodule of M properly containing N .

Lemma 1. ϕ : N ⊕N ′ → N +N ′ = M is an isomorphism.

Proof. Indeed, ϕ is surjective and its kernel is N ∩N ′ = 0. □

Now as ϕ|(N,0) : N ↪→ M is the embedding arising from the first decomposi-
tion series we have

M/N ≃ (N ⊕N ′)/(N, 0) ≃ N ′

and similarly
M/N ′ ≃ (N ⊕N ′)/(0, N ′) ≃ N.

So the case l = 2 is proven.
Let l ≥ 3 and assume the statement is true for l−1. Take two decomposition

series
0 ⊊ M0 ⊊ · · · ⊊ Ml = M

and
0 ⊊ M ′

0 ⊊ · · · ⊊ M ′
l = M.

If M0 = M ′
0 it follows that first successive quotients coincide and 0 ⊊

M1/M0 · · · ⊂ Ml/M0 as well as 0 ⊊ M ′
1/M0 · · · ⊂ M ′

l/M0 are decomposition
series for a length l−1 module M/M0 so we conclude by inductive assumption.
If M0 ̸= M ′

0 consider the chain 0 ⊊ M0 ⊊ M0 + M ′
0. It extends to a

decomposition series of the form

0 ⊊ M0 ⊊ M0 +M ′
0 ⊊ · · · ⊊ M ′′

l = M.

Consider the extending of the chain 0 ⊊ M ′
0 ⊊ M0 +M ′

0 to the decomposition
series

0 ⊊ M ′
0 ⊊ M0 +M ′

0 ⊊ · · · ⊊ M ′′
l = M

with the same higher terms as in the previous one starting with M0 +M ′
0.

Now observe that the first and the third decomposition series have the com-
mon first term, hence the same successive quotients by induction hypothesis.
Similarly the second and the fourth decomposition series have the same suc-
cessive quotients. Also the third and the fourth decomposition series have the
same successive quotients by the case l = 2 and as they have the same terms
starting with M0+M ′

0. Therefore the first and the second decomposition series
have the same successive quotients.


