LECTURE 1 EXERCISES

Exercise 1. Let $T=\operatorname{Spec} A$, with $A:=\mathbb{C}\left[X_{1}, X_{1}^{-1}, \cdots, X_{n}, X_{n}^{-1}\right]$ be an algebraic torus. Show that the multiplication map $\mathrm{m}: \mathrm{T} \times \mathrm{T} \rightarrow \mathrm{T}$ corresponds to the comultiplication map

$$
\begin{array}{r}
A \rightarrow A \otimes A \\
X_{i} \mapsto X_{i} \otimes X_{i}
\end{array}
$$

the inversion map to

$$
\begin{array}{r}
A \rightarrow A \\
X_{i} \rightarrow X_{i}^{-1}
\end{array}
$$

and the identity to

$$
\begin{aligned}
& A \rightarrow \mathbb{C} \\
& X_{i} \rightarrow 1
\end{aligned}
$$

Exercise 2. Suppose B is a ring over $\mathbb{C}, X=\operatorname{Spec} B$, and $T=\operatorname{Spec} A$ is a torus acting on X, $\alpha: T \times X \rightarrow X$, so that $\alpha(m(a, b), x)=\alpha(a, \alpha(b, x))$, and $\alpha(1, x)=x$. How can you phrase the data α in terms of the rings A, B ?
Exercise 3. Does the variety $X^{2}+Y^{2}=Z^{2}$ (i.e. Spec $\mathbb{C}[X, Y, Z] /\left(X^{2}+Y^{2}-Z^{2}\right)$) admit the structure of a toric variety?

Exercise 4. Let N be a lattice, with an isomorphism $\phi: \mathrm{N} \rightarrow \mathbb{Z}^{n}$. Show that ϕ induces an isomorphism $N \otimes_{\mathbb{Z}} \mathbb{R} \rightarrow \mathbb{R}^{n}$
Exercise 5. Let σ be the 0 cone in $\mathrm{N} \cong \mathbb{Z}^{n}$. Compute the corresponding variety.
Exercise 6. Let N be \mathbb{Z}^{2}. Compute the variety associated to the cone

- $\sigma=\operatorname{Cone}((1,0),(1,3))$.
- $\sigma=\operatorname{Cone}((1,0),(3,1))$

Do you see the difference?
Exercise 7. Let σ be the cone generated by $(1,0,0),(1,1,0),(1,0,1)$ and $(1,1,1)$ in $N=\mathbb{Z}^{3}$. Find the corresponding variety.

