LECTURE 2 EXERCISES

Exercise 1. In this exercise, we start with a vector space $N_{\mathbb{R}}$ and an inner product $\langle,\rangle N_{\mathbb{R}} \times N_{\mathbb{R}} \rightarrow \mathbb{R}$. This induces a metric on $N_{\mathbb{R}}$ as usual by

$$
d(x, y)=\sqrt{\langle y-x, y-x\rangle}
$$

- Let σ be a cone in $N_{\mathbb{R}}$, and $x \notin \sigma$. Show that there is a unique point $y \in \sigma$ closest to x (hint: if there are two points y_{1}, y_{2} in σ equidistant to x, show that the midpoint $\frac{y_{1}+y_{2}}{2}$ is in σ and is closer to x).
- Let y be the point of part (i). Show that

$$
\langle x, y\rangle=\langle y, y\rangle
$$

- Show that the vector $u=y-x$ is perpendicular to y and negative on x. (Hint: there is a right triangle formed by y, x and u).
Exercise 2. Prove the characterization of faces from the lecture: $\tau \subset \sigma$ is a face of σ if and only if τ is a cone, and $x+y \in \tau \Longrightarrow x \in \tau$ and $y \in \tau$.
(Hint: Let $\bar{\tau}$ be the smallest face containing τ. Then, since $\bar{\tau}$ is the disjoint union of its interior and its proper faces, there must be a point $x \in \tau \cap \bar{\tau}^{\circ}$. Use the fact that x is interior to show that for any $y \in \bar{\tau}, a x-y \in\left((\bar{\tau})^{\vee}\right)^{\vee}=\bar{\tau}$ for $a \gg 0$, and use and the assumption.
Exercise 3. Let σ be a cone, and τ a face. Suppose ρ is a face of τ. Show that ρ is a face of σ.
(Hint: what this says is: if $\rho=u^{\perp} \cap \tau$, for $u \geqslant 0$ on τ, it is also $w^{\perp} \cap \sigma$, for $w \geqslant 0$ on σ. Use the description $\tau=v^{\perp} \cap \sigma$, for $v \geqslant 0$ on σ to construct such a w from u.)
(Hint 2: for an easier proof, use exercise 2).
Exercise 4. Show that every proper face τ in σ is contained in a facet.
(Hint: Look at the image of τ and σ in the quotient space $\mathrm{N}_{\mathbb{R}} / \operatorname{Span}(\tau)$).

Exercise 5.

Definition 1. Let A be an integral domain, with field of fractions K. An element x of K is integral over A if it satisfies a (observe: monic) equation

$$
x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots a_{n}=0
$$

with $a_{i} \in A$. The ring A is called normal if every integral element $x \in K$ is in A.

- Show that the intersection of normal domains A_{i} in K is normal.
- Let σ be a cone, and let ρ be a ray of σ (one dimensional face). Compute

$$
\mathbb{C}\left[S_{\rho}\right]
$$

and show that it is normal.

- Show that $\mathbb{C}\left[S_{\sigma}\right]$ is normal. (Hint: Observe that $\sigma^{\vee}=\cap \rho^{\vee}$, as ρ ranges through the rays of σ.

Exercise 6. Suppose $V(F, N)$ is a toric variety corresponding to the fan F in N, and $V(G, L)$ is the fan corresponding to G in L. Construct the lattice and the fan of $V(F, N) \times V(G, L)$.

Exercise 7. Suppose $(\sigma, N),(\tau, L)$ are cones in lattices, and $\phi: N \rightarrow L$ is a homomorphism of lattices such that the induced map $\phi_{\mathbb{R}}: N_{\mathbb{R}} \rightarrow L_{\mathbb{R}}$ takes σ into τ.

- Check that the homomorphism $\phi: \mathrm{N} \rightarrow$ L induces a homomorphism of tori $\operatorname{Spec} \mathbb{C}\left[\mathrm{N}^{\star}\right] \rightarrow$ Spec $\mathbb{C}\left[L^{\star}\right]$.
- Show that there is a natural map

$$
V(\sigma, N)=\operatorname{Spec} \mathbb{C}\left[S_{\sigma}:=\sigma^{\vee} \cap N^{\star}\right] \rightarrow V(\tau, L)=\operatorname{Spec} \mathbb{C}\left[S_{\tau}:=\tau^{\vee} \cap L^{\star}\right]
$$

- Check that the map $V(\sigma, N) \rightarrow V(\sigma, L)$ of part (2) is equivariant. (Hint: this boils down to the claim that the diagram

commutes. It also boils down to the expectation that you constructed the correct map in (2) ;))

Exercise 8. Suppose $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are cones in a fan F, and let $\tau_{12}, \tau_{13}, \tau_{23}$ be the intersections of $\sigma_{i} \cap \sigma_{j}(i, j=1,2,3)$, which are faces of each σ_{i}, σ_{j}. Let ρ be the intersection $\sigma_{1} \cap \sigma_{2} \cap \sigma_{3}$. Show that the composition

$$
\mathrm{V}(\rho, \mathrm{~N}) \rightarrow \mathrm{V}\left(\tau_{12}\right) \rightarrow \mathrm{V}\left(\sigma_{1}\right)
$$

and

$$
\mathrm{V}(\rho, \mathrm{~N}) \rightarrow \mathrm{V}\left(\tau_{13}\right) \rightarrow \mathrm{V}\left(\sigma_{1}\right)
$$

coincide.
Exercise 9. Find the variety corresponding to the following fans:

